# -*-coding:utf-8-*- import torch import numpy as np from typing import List def get_rep_pos(tokenized: torch.Tensor, rep_tokens: list): pos_list = [] for token in rep_tokens: pos_list = torch.stack(torch.where(tokenized == token)).T.tolist() return pos_list def shift_tensor_dim0(ori: torch.Tensor, r_pos: List[np.ndarray], reps: int): assert reps >= 1 device = ori.device d = ori.shape[0] offset = np.zeros(d, dtype=np.int64) r_pos_cat = np.concatenate(r_pos) for p in r_pos_cat: offset[p + 1:] += (reps - 1) r_cnt = r_pos_cat.shape[0] target_pos = (np.arange(d) + offset)[:d - r_cnt * (reps - 1)] ori[target_pos] = ori[np.arange(target_pos.shape[0])] rep_final_pos: np.ndarray = target_pos[r_pos_cat].repeat(reps) + np.tile(np.arange(reps), r_cnt) ori[rep_final_pos] = ori[target_pos[r_pos_cat].repeat(reps)] rep_final_pos_list = [] lo = 0 for i in range(len(r_pos)): r_one_times = r_pos[i].shape[0] r_one_nums = r_one_times * reps rep_final_pos_list.append(rep_final_pos[lo: lo + r_one_nums].reshape(r_one_times, reps)) lo += r_one_nums return ori, rep_final_pos_list def _test_get_rep_pos(): tokenized = torch.LongTensor([0, 1, 2, 2, 3, 4, 5, 6, 7, 99] + [99] * 20) print('[from]:', tokenized) rep_tokens = [2, 6] rep_times = 2 rep_pos = get_rep_pos(tokenized, rep_tokens) print('[rep_pos]:', rep_pos) res, rep_pos_final = shift_tensor_dim0(tokenized, rep_pos, rep_times) print('[to]:', res) print('[final pos]:', rep_pos_final) def _test_shift_tensor_dim0(): embedded = torch.arange(20) print(embedded) pos = np.array([3, 6, 8]) times = 1 output = shift_tensor_dim0(embedded, pos, times) print(output) if __name__ == "__main__": _test_get_rep_pos()