import torch import torch.nn as nn import torch.nn.functional as F import kornia from einops import rearrange import torch.nn.init as init def leaky_relu(p=0.2): return nn.LeakyReLU(p, inplace=True) class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return x + self.fn(x, **kwargs) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, lr_mul=1, bias=True, pre_norm=False, activate = False): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim)) self.lr_mul = lr_mul self.pre_norm = pre_norm if pre_norm: self.norm = nn.LayerNorm(in_dim, eps=1e-5) self.activate = activate if self.activate == True: self.non_linear = leaky_relu() def forward(self, input): if hasattr(self, 'pre_norm') and self.pre_norm: out = self.norm(input) out = F.linear(out, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) if self.activate == True: out = self.non_linear(out) return out class StyleVectorizer(nn.Module): def __init__(self, dim_in, dim_out, depth, lr_mul = 0.1): super().__init__() layers = [] for i in range(depth): if i == 0: layers.extend([EqualLinear(dim_in, dim_out, lr_mul, pre_norm=False, activate = True)]) elif i == depth - 1: layers.extend([EqualLinear(dim_out, dim_out, lr_mul, pre_norm=True, activate = False)]) else: layers.extend([Residual(EqualLinear(dim_out, dim_out, lr_mul, pre_norm=True, activate = True))]) self.net = nn.Sequential(*layers) self.norm = nn.LayerNorm(dim_out, eps=1e-5) def forward(self, x): return self.norm(self.net(x))