Spaces:
Running
Running
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
from huggingface_hub import AsyncInferenceClient | |
from translatepy import Translator | |
from gradio_client import Client, handle_file | |
from PIL import Image | |
from huggingface_hub import login | |
from themes import IndonesiaTheme # Import custom IndonesiaTheme | |
MAX_SEED = np.iinfo(np.int32).max | |
HF_TOKEN = "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" | |
HF_TOKEN_UPSCALER = "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" | |
# Function to enable LoRA if selected | |
def enable_lora(lora_add, basemodel): | |
print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}") | |
return basemodel if not lora_add else lora_add | |
# Function to generate image | |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): | |
try: | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
print(f"[-] Menerjemahkan prompt: {prompt}") | |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word | |
print(f"[-] Generating image with prompt: {text}, model: {model}") | |
client = AsyncInferenceClient() | |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) | |
return image, seed | |
except Exception as e: | |
print(f"[-] Error generating image: {e}") | |
return None, None | |
# Function to upscale image | |
def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
try: | |
print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}") | |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) | |
result = client.predict( | |
input_image=handle_file(img_path), | |
prompt=prompt, | |
negative_prompt="worst quality, low quality, normal quality", | |
upscale_factor=upscale_factor, | |
controlnet_scale=0.6, | |
controlnet_decay=1, | |
condition_scale=6, | |
denoise_strength=0.35, | |
num_inference_steps=18, | |
solver="DDIM", | |
api_name="/process" | |
) | |
print(f"[-] Proses upscaling berhasil.") | |
return result[1] # Return upscale image path | |
except Exception as e: | |
print(f"[-] Error scaling image: {e}") | |
return None | |
# Main function to generate images and optionally upscale | |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): | |
print(f"[-] Memulai generasi gambar dengan prompt: {prompt}") | |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel | |
print(f"[-] Menggunakan model: {model}") | |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) | |
if image is None: | |
print("[-] Image generation failed.") | |
return [] | |
image_path = "temp_image.jpg" | |
print(f"[-] Menyimpan gambar sementara di: {image_path}") | |
image.save(image_path, format="JPEG") | |
upscale_image_path = None | |
if process_upscale: | |
print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}") | |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) | |
if upscale_image_path is not None and os.path.exists(upscale_image_path): | |
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}") | |
return [image_path, upscale_image_path] # Return both images | |
else: | |
print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.") | |
return [image_path] | |
# CSS for styling the interface | |
css = """ | |
#col-left, #col-mid, #col-right { | |
margin: 0 auto; | |
max-width: 400px; | |
padding: 10px; | |
border-radius: 15px; | |
background-color: #f9f9f9; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
} | |
#banner { | |
width: 100%; | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
#run-button { | |
background-color: #ff4b5c; | |
color: white; | |
font-weight: bold; | |
padding: 10px; | |
border-radius: 10px; | |
cursor: pointer; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); | |
} | |
#footer { | |
text-align: center; | |
margin-top: 20px; | |
color: silver; | |
} | |
""" | |
# Creating Gradio interface | |
with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker: | |
# Displaying the application title | |
gr.HTML('<div id="banner">β¨ Flux MultiMode Generator + Upscaler β¨</div>') | |
with gr.Column(elem_id="col-container"): | |
# Output section (replacing ImageSlider with gr.Gallery) | |
with gr.Row(): | |
output_res = gr.Gallery(label="β‘ Flux / Upscaled Image β‘", elem_id="output-res", columns=2, height="auto") | |
# User input section split into two columns | |
with gr.Row(): | |
# Column 1: Input prompt, LoRA, and base model | |
with gr.Column(scale=1, elem_id="col-left"): | |
prompt = gr.Textbox( | |
label="π Deskripsi Gambar", | |
placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.", | |
elem_id="textbox-prompt" | |
) | |
basemodel_choice = gr.Dropdown( | |
label="πΌοΈ Pilih Model", | |
choices=[ | |
"black-forest-labs/FLUX.1-schnell", | |
"black-forest-labs/FLUX.1-DEV", | |
"enhanceaiteam/Flux-uncensored", | |
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", | |
"Shakker-Labs/FLUX.1-dev-LoRA-add-details", | |
"city96/FLUX.1-dev-gguf" | |
], | |
value="black-forest-labs/FLUX.1-schnell" | |
) | |
lora_model_choice = gr.Dropdown( | |
label="π¨ Pilih LoRA", | |
choices=[ | |
"Shakker-Labs/FLUX.1-dev-LoRA-add-details", | |
"XLabs-AI/flux-RealismLora", | |
"enhanceaiteam/Flux-uncensored" | |
], | |
value="XLabs-AI/flux-RealismLora" | |
) | |
process_lora = gr.Checkbox(label="π¨ Aktifkan LoRA") | |
process_upscale = gr.Checkbox(label="π Aktifkan Peningkatan Resolusi") | |
upscale_factor = gr.Radio(label="π Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2) | |
# Column 2: Advanced options (always open) | |
with gr.Column(scale=1, elem_id="col-right"): | |
with gr.Accordion(label="βοΈ Opsi Lanjutan", open=True): | |
width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280) | |
height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768) | |
scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8) | |
steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8) | |
seed = gr.Number(label="Seed", value=-1) | |
# Button to generate image | |
btn = gr.Button("π Buat Gambar", elem_id="generate-btn") | |
# Running the `gen` function when "Generate" button is pressed | |
btn.click(fn=gen, inputs=[ | |
prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora | |
], outputs=output_res) | |
# Launching the Gradio app | |
WallpaperFluxMaker.queue(api_open=False).launch(show_api=False) |