Deddy's picture
Update app.py
7440665 verified
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
from gradio_client import Client, handle_file
from PIL import Image
from huggingface_hub import login
from themes import IndonesiaTheme # Import custom IndonesiaTheme
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = "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"
HF_TOKEN_UPSCALER = "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"
# Function to enable LoRA if selected
def enable_lora(lora_add, basemodel):
print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}")
return basemodel if not lora_add else lora_add
# Function to generate image
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f"[-] Menerjemahkan prompt: {prompt}")
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
print(f"[-] Generating image with prompt: {text}, model: {model}")
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
print(f"[-] Error generating image: {e}")
return None, None
# Function to upscale image
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}")
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path),
prompt=prompt,
negative_prompt="worst quality, low quality, normal quality",
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process"
)
print(f"[-] Proses upscaling berhasil.")
return result[1] # Return upscale image path
except Exception as e:
print(f"[-] Error scaling image: {e}")
return None
# Main function to generate images and optionally upscale
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
print(f"[-] Memulai generasi gambar dengan prompt: {prompt}")
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
print(f"[-] Menggunakan model: {model}")
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
print("[-] Image generation failed.")
return []
image_path = "temp_image.jpg"
print(f"[-] Menyimpan gambar sementara di: {image_path}")
image.save(image_path, format="JPEG")
upscale_image_path = None
if process_upscale:
print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}")
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
if upscale_image_path is not None and os.path.exists(upscale_image_path):
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
return [image_path, upscale_image_path] # Return both images
else:
print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.")
return [image_path]
# CSS for styling the interface
css = """
#col-left, #col-mid, #col-right {
margin: 0 auto;
max-width: 400px;
padding: 10px;
border-radius: 15px;
background-color: #f9f9f9;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
#banner {
width: 100%;
text-align: center;
margin-bottom: 20px;
}
#run-button {
background-color: #ff4b5c;
color: white;
font-weight: bold;
padding: 10px;
border-radius: 10px;
cursor: pointer;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
#footer {
text-align: center;
margin-top: 20px;
color: silver;
}
"""
# Creating Gradio interface
with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
# Displaying the application title
gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')
with gr.Column(elem_id="col-container"):
# Output section (replacing ImageSlider with gr.Gallery)
with gr.Row():
output_res = gr.Gallery(label="⚑ Flux / Upscaled Image ⚑", elem_id="output-res", columns=2, height="auto")
# User input section split into two columns
with gr.Row():
# Column 1: Input prompt, LoRA, and base model
with gr.Column(scale=1, elem_id="col-left"):
prompt = gr.Textbox(
label="πŸ“œ Deskripsi Gambar",
placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.",
elem_id="textbox-prompt"
)
basemodel_choice = gr.Dropdown(
label="πŸ–ΌοΈ Pilih Model",
choices=[
"black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-DEV",
"enhanceaiteam/Flux-uncensored",
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"city96/FLUX.1-dev-gguf"
],
value="black-forest-labs/FLUX.1-schnell"
)
lora_model_choice = gr.Dropdown(
label="🎨 Pilih LoRA",
choices=[
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"XLabs-AI/flux-RealismLora",
"enhanceaiteam/Flux-uncensored"
],
value="XLabs-AI/flux-RealismLora"
)
process_lora = gr.Checkbox(label="🎨 Aktifkan LoRA")
process_upscale = gr.Checkbox(label="πŸ” Aktifkan Peningkatan Resolusi")
upscale_factor = gr.Radio(label="πŸ” Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2)
# Column 2: Advanced options (always open)
with gr.Column(scale=1, elem_id="col-right"):
with gr.Accordion(label="βš™οΈ Opsi Lanjutan", open=True):
width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768)
scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8)
steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8)
seed = gr.Number(label="Seed", value=-1)
# Button to generate image
btn = gr.Button("πŸš€ Buat Gambar", elem_id="generate-btn")
# Running the `gen` function when "Generate" button is pressed
btn.click(fn=gen, inputs=[
prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
], outputs=output_res)
# Launching the Gradio app
WallpaperFluxMaker.queue(api_open=False).launch(show_api=False)