Spaces:
Running
Running
salomonsky
commited on
Commit
•
7809429
1
Parent(s):
0a48097
Update app.py
Browse files
app.py
CHANGED
@@ -12,14 +12,19 @@ from gradio_client import Client, handle_file
|
|
12 |
from huggingface_hub import login
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
|
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
18 |
|
|
|
19 |
def enable_lora(lora_add, basemodel):
|
|
|
20 |
return basemodel if not lora_add else lora_add
|
21 |
|
|
|
22 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
|
|
23 |
try:
|
24 |
if seed == -1:
|
25 |
seed = random.randint(0, MAX_SEED)
|
@@ -29,19 +34,23 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
29 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
30 |
return image, seed
|
31 |
except Exception as e:
|
32 |
-
print(f"Error
|
33 |
return None, None
|
34 |
|
|
|
35 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
|
36 |
try:
|
37 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
38 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
39 |
return result[1]
|
40 |
except Exception as e:
|
41 |
-
print(f"Error
|
42 |
return None
|
43 |
|
|
|
44 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
|
|
45 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
46 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
47 |
if image is None:
|
@@ -52,16 +61,22 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
52 |
|
53 |
if process_upscale:
|
54 |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
else:
|
59 |
return [image_path, image_path]
|
60 |
|
|
|
61 |
css = """
|
62 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
63 |
"""
|
64 |
|
|
|
65 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
66 |
with gr.Column(elem_id="col-container"):
|
67 |
with gr.Row():
|
|
|
12 |
from huggingface_hub import login
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
+
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
19 |
|
20 |
+
|
21 |
def enable_lora(lora_add, basemodel):
|
22 |
+
"""Habilita o deshabilita LoRA según la opción seleccionada"""
|
23 |
return basemodel if not lora_add else lora_add
|
24 |
|
25 |
+
|
26 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
27 |
+
"""Genera una imagen utilizando el modelo seleccionado"""
|
28 |
try:
|
29 |
if seed == -1:
|
30 |
seed = random.randint(0, MAX_SEED)
|
|
|
34 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
35 |
return image, seed
|
36 |
except Exception as e:
|
37 |
+
print(f"Error generando imagen: {e}")
|
38 |
return None, None
|
39 |
|
40 |
+
|
41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
42 |
+
"""Escala una imagen utilizando FineGrain"""
|
43 |
try:
|
44 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
45 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
46 |
return result[1]
|
47 |
except Exception as e:
|
48 |
+
print(f"Error escalando imagen: {e}")
|
49 |
return None
|
50 |
|
51 |
+
|
52 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
53 |
+
"""Función principal que genera y escala la imagen"""
|
54 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
55 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
56 |
if image is None:
|
|
|
61 |
|
62 |
if process_upscale:
|
63 |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
64 |
+
if upscale_image_path is not None:
|
65 |
+
upscale_image = Image.open(upscale_image_path)
|
66 |
+
upscale_image.save("upscale_image.jpg", format="JPEG")
|
67 |
+
return [image_path, "upscale_image.jpg"]
|
68 |
+
else:
|
69 |
+
print("Error: La ruta de la imagen escalada es None")
|
70 |
+
return [image_path, image_path]
|
71 |
else:
|
72 |
return [image_path, image_path]
|
73 |
|
74 |
+
|
75 |
css = """
|
76 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
77 |
"""
|
78 |
|
79 |
+
|
80 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
81 |
with gr.Column(elem_id="col-container"):
|
82 |
with gr.Row():
|