File size: 4,984 Bytes
b49d235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
from dataclasses import dataclass

import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_sft

from flux.model import Flux, FluxParams
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
from flux.modules.conditioner import HFEmbedder


@dataclass
class ModelSpec:
    params: FluxParams
    ae_params: AutoEncoderParams
    ckpt_path: str
    ae_path: str
    repo_id: str
    repo_flow: str
    repo_ae: str


configs = {
    "flux-dev": ModelSpec(
        repo_id="black-forest-labs/FLUX.1-dev",
        repo_flow="flux1-dev.safetensors",
        repo_ae="ae.safetensors",
        ckpt_path='models/flux1-dev.safetensors',
        params=FluxParams(
            in_channels=64,
            vec_in_dim=768,
            context_in_dim=4096,
            hidden_size=3072,
            mlp_ratio=4.0,
            num_heads=24,
            depth=19,
            depth_single_blocks=38,
            axes_dim=[16, 56, 56],
            theta=10_000,
            qkv_bias=True,
            guidance_embed=True,
        ),
        ae_path='models/ae.safetensors',
        ae_params=AutoEncoderParams(
            resolution=256,
            in_channels=3,
            ch=128,
            out_ch=3,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=2,
            z_channels=16,
            scale_factor=0.3611,
            shift_factor=0.1159,
        ),
    ),
    "flux-schnell": ModelSpec(
        repo_id="black-forest-labs/FLUX.1-schnell",
        repo_flow="flux1-schnell.safetensors",
        repo_ae="ae.safetensors",
        ckpt_path=os.getenv("FLUX_SCHNELL"),
        params=FluxParams(
            in_channels=64,
            vec_in_dim=768,
            context_in_dim=4096,
            hidden_size=3072,
            mlp_ratio=4.0,
            num_heads=24,
            depth=19,
            depth_single_blocks=38,
            axes_dim=[16, 56, 56],
            theta=10_000,
            qkv_bias=True,
            guidance_embed=False,
        ),
        ae_path=os.getenv("AE"),
        ae_params=AutoEncoderParams(
            resolution=256,
            in_channels=3,
            ch=128,
            out_ch=3,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=2,
            z_channels=16,
            scale_factor=0.3611,
            shift_factor=0.1159,
        ),
    ),
}


def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
    if len(missing) > 0 and len(unexpected) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
        print("\n" + "-" * 79 + "\n")
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
    elif len(missing) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
    elif len(unexpected) > 0:
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))


def load_flow_model(name: str, device: str = "cuda", hf_download: bool = True):
    # Loading Flux
    print("Init model")
    ckpt_path = configs[name].ckpt_path
    if (
        not os.path.exists(ckpt_path)
        and configs[name].repo_id is not None
        and configs[name].repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow, local_dir='models')

    with torch.device(device):
        model = Flux(configs[name].params).to(torch.bfloat16)

    if ckpt_path is not None:
        print("Loading checkpoint")
        # load_sft doesn't support torch.device
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = model.load_state_dict(sd, strict=False)
        print_load_warning(missing, unexpected)
    return model


def load_t5(device: str = "cuda", max_length: int = 512) -> HFEmbedder:
    # max length 64, 128, 256 and 512 should work (if your sequence is short enough)
    return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device)


def load_clip(device: str = "cuda") -> HFEmbedder:
    return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)


def load_ae(name: str, device: str = "cuda", hf_download: bool = True) -> AutoEncoder:
    ckpt_path = configs[name].ae_path
    if (
        not os.path.exists(ckpt_path)
        and configs[name].repo_id is not None
        and configs[name].repo_ae is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae, local_dir='models')

    # Loading the autoencoder
    print("Init AE")
    with torch.device(device):
        ae = AutoEncoder(configs[name].ae_params)

    if ckpt_path is not None:
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = ae.load_state_dict(sd, strict=False)
        print_load_warning(missing, unexpected)
    return ae