Spaces:
Running
Running
# -------------------------------------------------------- | |
# Adapted from https://github.com/microsoft/unilm/tree/master/beit | |
# -------------------------------------------------------- | |
import math | |
import os | |
from functools import partial | |
from itertools import repeat | |
import collections.abc | |
import torch | |
import torch.nn as nn | |
import warnings | |
import torch.nn.functional as F | |
from .transformer import PatchDropout | |
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast | |
if os.getenv('ENV_TYPE') == 'deepspeed': | |
try: | |
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint | |
except: | |
from torch.utils.checkpoint import checkpoint | |
else: | |
from torch.utils.checkpoint import checkpoint | |
try: | |
import xformers | |
import xformers.ops as xops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return 'p={}'.format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
drop=0., | |
subln=False, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
# x = self.drop(x) | |
# commit this for the orignal BERT implement | |
x = self.ffn_ln(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class SwiGLU(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., | |
norm_layer=nn.LayerNorm, subln=False): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.w1 = nn.Linear(in_features, hidden_features) | |
self.w2 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() | |
self.w3 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x1 = self.w1(x) | |
x2 = self.w2(x) | |
hidden = self.act(x1) * x2 | |
x = self.ffn_ln(hidden) | |
x = self.w3(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., | |
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.subln = subln | |
if self.subln: | |
self.q_proj = nn.Linear(dim, all_head_dim, bias=False) | |
self.k_proj = nn.Linear(dim, all_head_dim, bias=False) | |
self.v_proj = nn.Linear(dim, all_head_dim, bias=False) | |
else: | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.v_bias = None | |
if window_size: | |
self.window_size = window_size | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = \ | |
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer("relative_position_index", relative_position_index) | |
else: | |
self.window_size = None | |
self.relative_position_bias_table = None | |
self.relative_position_index = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() | |
# self.proj = nn.Linear(all_head_dim, all_head_dim) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.xattn = xattn | |
self.xattn_drop = attn_drop | |
self.rope = rope | |
def forward(self, x, rel_pos_bias=None, attn_mask=None): | |
B, N, C = x.shape | |
if self.subln: | |
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) | |
k = F.linear(input=x, weight=self.k_proj.weight, bias=None) | |
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) | |
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C | |
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
else: | |
qkv_bias = None | |
if self.q_bias is not None: | |
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
if self.rope: | |
# slightly fast impl | |
q_t = q[:, :, 1:, :] | |
ro_q_t = self.rope(q_t) | |
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) | |
k_t = k[:, :, 1:, :] | |
ro_k_t = self.rope(k_t) | |
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) | |
if self.xattn: | |
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
x = xops.memory_efficient_attention( | |
q, k, v, | |
p=self.xattn_drop, | |
scale=self.scale, | |
) | |
x = x.reshape(B, N, -1) | |
x = self.inner_attn_ln(x) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
else: | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
if self.relative_position_bias_table is not None: | |
relative_position_bias = \ | |
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) | |
if rel_pos_bias is not None: | |
attn = attn + rel_pos_bias.type_as(attn) | |
if attn_mask is not None: | |
attn_mask = attn_mask.bool() | |
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.inner_attn_ln(x) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, | |
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False, | |
subln=False, naiveswiglu=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim, | |
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
if naiveswiglu: | |
self.mlp = SwiGLU( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
subln=subln, | |
norm_layer=norm_layer, | |
) | |
else: | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
subln=subln, | |
drop=drop | |
) | |
if init_values is not None and init_values > 0: | |
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
self.postnorm = postnorm | |
def forward(self, x, rel_pos_bias=None, attn_mask=None): | |
if self.gamma_1 is None: | |
if self.postnorm: | |
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) | |
x = x + self.drop_path(self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
else: | |
if self.postnorm: | |
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) | |
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x, **kwargs): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class RelativePositionBias(nn.Module): | |
def __init__(self, window_size, num_heads): | |
super().__init__() | |
self.window_size = window_size | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = \ | |
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer("relative_position_index", relative_position_index) | |
def forward(self): | |
relative_position_bias = \ | |
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
class EVAVisionTransformer(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0., | |
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False, | |
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False, | |
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False): | |
super().__init__() | |
if not XFORMERS_IS_AVAILBLE: | |
xattn = False | |
self.image_size = img_size | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
if use_abs_pos_emb: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
else: | |
self.pos_embed = None | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
if use_shared_rel_pos_bias: | |
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) | |
else: | |
self.rel_pos_bias = None | |
if rope: | |
half_head_dim = embed_dim // num_heads // 2 | |
hw_seq_len = img_size // patch_size | |
self.rope = VisionRotaryEmbeddingFast( | |
dim=half_head_dim, | |
pt_seq_len=pt_hw_seq_len, | |
ft_seq_len=hw_seq_len if intp_freq else None, | |
# patch_dropout=patch_dropout | |
) | |
else: | |
self.rope = None | |
self.naiveswiglu = naiveswiglu | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.use_rel_pos_bias = use_rel_pos_bias | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, | |
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu) | |
for i in range(depth)]) | |
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) | |
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
# trunc_normal_(self.mask_token, std=.02) | |
self.apply(self._init_weights) | |
self.fix_init_weight() | |
if isinstance(self.head, nn.Linear): | |
trunc_normal_(self.head.weight, std=.02) | |
self.head.weight.data.mul_(init_scale) | |
self.head.bias.data.mul_(init_scale) | |
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn | |
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() | |
self.grad_checkpointing = grad_checkpointing | |
def fix_init_weight(self): | |
def rescale(param, layer_id): | |
param.div_(math.sqrt(2.0 * layer_id)) | |
for layer_id, layer in enumerate(self.blocks): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
if self.naiveswiglu: | |
rescale(layer.mlp.w3.weight.data, layer_id + 1) | |
else: | |
rescale(layer.mlp.fc2.weight.data, layer_id + 1) | |
def get_cast_dtype(self) -> torch.dtype: | |
return self.blocks[0].mlp.fc2.weight.dtype | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self): | |
return len(self.blocks) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
assert unlocked_groups == 0, 'partial locking not currently supported for this model' | |
for param in self.parameters(): | |
param.requires_grad = False | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False): | |
x = self.patch_embed(x) | |
batch_size, seq_len, _ = x.size() | |
if shuffle: | |
idx = torch.randperm(x.shape[1]) + 1 | |
zero = torch.LongTensor([0, ]) | |
idx = torch.cat([zero, idx]) | |
pos_embed = self.pos_embed[:, idx] | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
if shuffle: | |
x = x + pos_embed | |
elif self.pos_embed is not None: | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in | |
if os.getenv('RoPE') == '1': | |
if self.training and not isinstance(self.patch_dropout, nn.Identity): | |
x, patch_indices_keep = self.patch_dropout(x) | |
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) | |
else: | |
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) | |
x = self.patch_dropout(x) | |
else: | |
x = self.patch_dropout(x) | |
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None | |
hidden_states = [] | |
for idx, blk in enumerate(self.blocks): | |
if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden: | |
hidden_states.append(x) | |
if self.grad_checkpointing: | |
x = checkpoint(blk, x, (rel_pos_bias,)) | |
else: | |
x = blk(x, rel_pos_bias=rel_pos_bias) | |
if not return_all_features: | |
x = self.norm(x) | |
if self.fc_norm is not None: | |
return self.fc_norm(x.mean(1)), hidden_states | |
else: | |
return x[:, 0], hidden_states | |
return x | |
def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False): | |
if return_all_features: | |
return self.forward_features(x, return_all_features, return_hidden, shuffle) | |
x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle) | |
x = self.head(x) | |
if return_hidden: | |
return x, hidden_states | |
return x | |