Spaces:
Running
Running
from typing import Optional, Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms.functional as F | |
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ | |
CenterCrop | |
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
class ResizeMaxSize(nn.Module): | |
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0): | |
super().__init__() | |
if not isinstance(max_size, int): | |
raise TypeError(f"Size should be int. Got {type(max_size)}") | |
self.max_size = max_size | |
self.interpolation = interpolation | |
self.fn = min if fn == 'min' else min | |
self.fill = fill | |
def forward(self, img): | |
if isinstance(img, torch.Tensor): | |
height, width = img.shape[:2] | |
else: | |
width, height = img.size | |
scale = self.max_size / float(max(height, width)) | |
if scale != 1.0: | |
new_size = tuple(round(dim * scale) for dim in (height, width)) | |
img = F.resize(img, new_size, self.interpolation) | |
pad_h = self.max_size - new_size[0] | |
pad_w = self.max_size - new_size[1] | |
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill) | |
return img | |
def _convert_to_rgb(image): | |
return image.convert('RGB') | |
# class CatGen(nn.Module): | |
# def __init__(self, num=4): | |
# self.num = num | |
# def mixgen_batch(image, text): | |
# batch_size = image.shape[0] | |
# index = np.random.permutation(batch_size) | |
# cat_images = [] | |
# for i in range(batch_size): | |
# # image mixup | |
# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:] | |
# # text concat | |
# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0] | |
# text = torch.stack(text) | |
# return image, text | |
def image_transform( | |
image_size: int, | |
is_train: bool, | |
mean: Optional[Tuple[float, ...]] = None, | |
std: Optional[Tuple[float, ...]] = None, | |
resize_longest_max: bool = False, | |
fill_color: int = 0, | |
): | |
mean = mean or OPENAI_DATASET_MEAN | |
if not isinstance(mean, (list, tuple)): | |
mean = (mean,) * 3 | |
std = std or OPENAI_DATASET_STD | |
if not isinstance(std, (list, tuple)): | |
std = (std,) * 3 | |
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: | |
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge | |
image_size = image_size[0] | |
normalize = Normalize(mean=mean, std=std) | |
if is_train: | |
return Compose([ | |
RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), | |
_convert_to_rgb, | |
ToTensor(), | |
normalize, | |
]) | |
else: | |
if resize_longest_max: | |
transforms = [ | |
ResizeMaxSize(image_size, fill=fill_color) | |
] | |
else: | |
transforms = [ | |
Resize(image_size, interpolation=InterpolationMode.BICUBIC), | |
CenterCrop(image_size), | |
] | |
transforms.extend([ | |
_convert_to_rgb, | |
ToTensor(), | |
normalize, | |
]) | |
return Compose(transforms) | |