Spaces:
Sleeping
Sleeping
import time | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gradio as gr | |
import torch | |
import spaces | |
model_id = "DeepMount00/Llama-3-8b-Ita" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval() # to("cuda:0") | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">Meta Llama3 8B ITA</h1> | |
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/DeepMount00/Llama-3-8b-Ita"><b>Meta Llama3 8b Chat ITA</b></a>.</p> | |
</div> | |
<div> | |
<p>This model, <strong>DeepMount00/Llama-3-8b-Ita</strong>, is currently the best open-source large language model for the Italian language. You can view its ranking and compare it with other models on the leaderboard at <a href="https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard"><b>this site</b></a>.</p> | |
</div> | |
''' | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/64f1bf6a8b550e875926a590/9IXg0qMUF0OV2cWPT8cZn.jpeg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.50; "> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepMount00 llama3</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Chiedimi qualsiasi cosa...</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str: | |
# Initialize the conversation with a system prompt | |
conversation = [{"role": "system", "content": "Sei un assistente specializzato nella lingua italiana."}] | |
flat_history = [item for sublist in history for item in sublist] | |
if len(flat_history) > 16: | |
flat_history = flat_history[-16:] | |
# Rebuild the conversation from the trimmed history | |
for i in range(0, len(flat_history), 2): | |
conversation.extend([ | |
{"role": "user", "content": flat_history[i]}, | |
{"role": "assistant", "content": flat_history[i + 1]} | |
]) | |
# Add the current user message to the conversation | |
conversation.append({"role": "user", "content": message}) | |
# Prepare the input for the model | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) | |
# Parameters for generating text | |
do_sample = True if temperature > 0 else False # Use sampling unless temperature is 0 | |
real_temperature = max(temperature, 0.001) # Avoid zero temperature which disables sampling | |
# Generate a response from the model | |
generated_ids = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
temperature=real_temperature, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
input_length = input_ids.size(1) | |
new_tokens = generated_ids[:, input_length:] | |
decoded = tokenizer.batch_decode(new_tokens, skip_special_tokens=True)[0] | |
final_response = decoded.strip("assistant") | |
if final_response.startswith(':'): | |
final_response = final_response.lstrip(':').strip() | |
return final_response | |
# Gradio block | |
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
gr.ChatInterface( | |
fn=chat_llama3_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.001, | |
label="Temperature", | |
render=False), | |
gr.Slider(minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False), | |
], | |
examples=[ | |
['Quanto è alta la torre di Pisa?'], | |
["Se un mattone pesa 1kg più mezzo mattone, quanto pesa il mattone? rispondi impostando l'equazione"], | |
['Quanto fa 2 * 9?'], | |
['Scrivi una funzione python che calcola i primi n numeri di fibonacci'], | |
['Inventa tre indovinelli tutti diversi con le relative risposte in formato json'] | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |