DeepMount00's picture
Update app.py
ced5932 verified
raw
history blame
4.5 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
DESCRIPTION = """\
# Lexora 7B ITA ๐Ÿ’ฌ ๐Ÿ‡ฎ๐Ÿ‡น
"""
# Custom CSS to fix chat visualization
CUSTOM_CSS = """
.contain { display: flex; flex-direction: column; }
#component-0 { height: calc(100vh - 100px); overflow-y: auto; }
.chat { height: 100%; }
.message-wrap { max-height: none !important; }
.message { padding: 15px !important; margin: 5px !important; }
.user-message { background-color: #f0f0f0 !important; }
.bot-message { background-color: #e3f2fd !important; }
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "DeepMount00/Lexora-Medium-7B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
model.config.sliding_window = 4096
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_message: str = "",
max_new_tokens: int = 1024,
temperature: float = 0.001,
top_p: float = 1.0,
top_k: int = 50,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
conversation = [{"role": "system", "content": system_message}]
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(
value="",
label="System message",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0,
maximum=4.0,
step=0.1,
value=0.001,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
),
],
stop_btn=None,
examples=[
["Ciao! Come stai?"],
],
cache_examples=False,
)
with gr.Blocks(css=CUSTOM_CSS, fill_height=True, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes="contain"):
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()