Spaces:
Sleeping
Sleeping
DeepMount00
commited on
Commit
•
efe44f0
1
Parent(s):
9b5b16c
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from threading import Thread
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
|
7 |
+
model_id = r"/home/michele/PycharmProjects/mistral_finetuning/llama_ita_complete_v2"
|
8 |
+
# model_id = r"/home/michele/PycharmProjects/mistral_finetuning/mistral_ita_complete_v5"
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval() # to("cuda:0")
|
12 |
+
|
13 |
+
DESCRIPTION = '''
|
14 |
+
<div>
|
15 |
+
<h1 style="text-align: center;">Meta Llama3 8B Ita</h1>
|
16 |
+
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/DeepMount00/Llama-3-8b-Ita"><b>Meta Llama3 8b Chat</b></a>.</p>
|
17 |
+
</div>
|
18 |
+
'''
|
19 |
+
PLACEHOLDER = """
|
20 |
+
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
21 |
+
<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/64f1bf6a8b550e875926a590/9IXg0qMUF0OV2cWPT8cZn.jpeg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.50; ">
|
22 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepMount00 llama3</h1>
|
23 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Chiedimi qualsiasi cosa...</p>
|
24 |
+
</div>
|
25 |
+
"""
|
26 |
+
|
27 |
+
|
28 |
+
css = """
|
29 |
+
h1 {
|
30 |
+
text-align: center;
|
31 |
+
display: block;
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
@spaces.GPU(duration=120)
|
36 |
+
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str:
|
37 |
+
# Creare la struttura della conversazione
|
38 |
+
conversation = []
|
39 |
+
for user, assistant in history:
|
40 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
41 |
+
conversation.append({"role": "user", "content": message})
|
42 |
+
|
43 |
+
# Preparare gli input per il modello
|
44 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
45 |
+
|
46 |
+
# Parametri per la generazione del testo
|
47 |
+
do_sample = True if temperature > 0 else False # Usa il campionamento a meno che la temperatura non sia 0
|
48 |
+
real_temperature = max(temperature, 0.001) # Evita temperatura 0 che disabilita il campionamento
|
49 |
+
|
50 |
+
# Generare una risposta dal modello
|
51 |
+
generated_ids = model.generate(
|
52 |
+
input_ids=input_ids,
|
53 |
+
max_new_tokens=max_new_tokens,
|
54 |
+
do_sample=do_sample,
|
55 |
+
temperature=real_temperature,
|
56 |
+
eos_token_id=tokenizer.eos_token_id
|
57 |
+
)
|
58 |
+
|
59 |
+
# Decodificare i token generati
|
60 |
+
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
61 |
+
prompt_end_index = decoded[0].find(message) + len(message)
|
62 |
+
final_response = decoded[0][prompt_end_index:] if prompt_end_index != -1 else decoded[0]
|
63 |
+
|
64 |
+
return final_response.strip("assistant")
|
65 |
+
|
66 |
+
|
67 |
+
# Gradio block
|
68 |
+
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
69 |
+
|
70 |
+
with gr.Blocks(fill_height=True, css=css) as demo:
|
71 |
+
gr.Markdown(DESCRIPTION)
|
72 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
73 |
+
gr.ChatInterface(
|
74 |
+
fn=chat_llama3_8b,
|
75 |
+
chatbot=chatbot,
|
76 |
+
fill_height=True,
|
77 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
78 |
+
additional_inputs=[
|
79 |
+
gr.Slider(minimum=0,
|
80 |
+
maximum=1,
|
81 |
+
step=0.1,
|
82 |
+
value=0.001,
|
83 |
+
label="Temperature",
|
84 |
+
render=False),
|
85 |
+
gr.Slider(minimum=128,
|
86 |
+
maximum=4096,
|
87 |
+
step=1,
|
88 |
+
value=512,
|
89 |
+
label="Max new tokens",
|
90 |
+
render=False),
|
91 |
+
],
|
92 |
+
examples=[
|
93 |
+
['Quanto è alta la torre di Pisa?'],
|
94 |
+
["Se un mattone pesa 1kg più mezzo mattone, quanto pesa il mattone? rispondi impostando l'equazione"],
|
95 |
+
['Quanto fa 9.000 * 9.000?'],
|
96 |
+
['Scrivi una funzione python che calcola i primi n numeri di fibonacci'],
|
97 |
+
['Inventa tre indovinelli tutti diversi con le relative risposte in formato json']
|
98 |
+
],
|
99 |
+
cache_examples=False,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
demo.launch()
|