import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import subprocess subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) # Constants MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # Model initialization device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "DeepMount00/Lexora-Lite-3B" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True, ) model.eval() # Custom CSS CUSTOM_CSS = """ /* Base styles */ * { margin: 0; padding: 0; box-sizing: border-box; } body { font-family: 'Inter', sans-serif; background-color: #f8fafc; color: #1e293b; } /* Container styles */ .container { max-width: 1000px !important; margin: auto !important; padding: 2rem !important; } /* Header styles */ .header-container { background: linear-gradient(135deg, #1e3a8a 0%, #3b82f6 100%); padding: 2.5rem; border-radius: 1rem; margin-bottom: 2rem; color: white; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); } .header-title { font-size: 2.5rem; font-weight: 700; margin-bottom: 1.5rem; text-align: center; letter-spacing: -0.025em; } /* Model info styles */ .model-info { background: white; padding: 1.75rem; border-radius: 0.75rem; margin-top: 1.5rem; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); } .model-info h2 { font-size: 1.5rem; font-weight: 600; color: #1e3a8a; margin-bottom: 1rem; } .model-info p { color: #374151; line-height: 1.6; font-size: 1.1rem; } .model-info a { color: #2563eb; font-weight: 600; text-decoration: none; transition: color 0.2s; } .model-info a:hover { color: #1d4ed8; text-decoration: underline; } /* Chat container styles */ .chat-container { border: 1px solid #e5e7eb; border-radius: 1rem; background: white; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); margin-bottom: 2rem; } /* Message styles */ .message { padding: 1.25rem; margin: 0.75rem; border-radius: 0.5rem; font-size: 1.05rem; line-height: 1.6; } .user-message { background: #f3f4f6; border-left: 4px solid #3b82f6; } .assistant-message { background: #dbeafe; border-left: 4px solid #1d4ed8; } /* Controls container styles */ .controls-container { background: #f8fafc; padding: 1.75rem; border-radius: 0.75rem; margin-top: 1.5rem; border: 1px solid #e5e7eb; } /* Slider styles */ .slider-label { font-weight: 600; color: #374151; margin-bottom: 0.5rem; font-size: 1.05rem; } /* Button styles */ .duplicate-button { background: #2563eb !important; color: white !important; padding: 0.875rem 1.75rem !important; border-radius: 0.5rem !important; font-weight: 600 !important; font-size: 1.05rem !important; transition: all 0.2s !important; border: none !important; cursor: pointer !important; display: inline-flex !important; align-items: center !important; justify-content: center !important; text-align: center !important; box-shadow: 0 2px 4px rgba(37, 99, 235, 0.2) !important; } .duplicate-button:hover { background: #1d4ed8 !important; transform: translateY(-1px) !important; box-shadow: 0 4px 6px rgba(37, 99, 235, 0.3) !important; } /* Input field styles */ .input-textarea { border: 2px solid #e5e7eb !important; border-radius: 0.5rem !important; padding: 1rem !important; font-size: 1.05rem !important; transition: border-color 0.2s !important; } .input-textarea:focus { border-color: #3b82f6 !important; outline: none !important; box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important; } /* System message styles */ .system-message { background: #f8fafc; border: 1px solid #e5e7eb; border-radius: 0.5rem; padding: 1rem; margin-bottom: 1rem; } """ # HTML Description DESCRIPTION = '''

Lexora-Lite-3B

About the Model

Welcome to the demonstration of Lexora-Lite-3B Chat ITA, currently the leading open-source large language model for the Italian language. This model represents the state-of-the-art in Italian natural language processing, combining powerful language understanding with efficient performance.

View its performance metrics and compare it with other models on the official leaderboard.

''' @spaces.GPU(duration=90) def generate( message: str, chat_history: list[tuple[str, str]], system_message: str = "", max_new_tokens: int = 2048, temperature: float = 0.0001, top_p: float = 1.0, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: conversation = [{"role": "system", "content": system_message}] for user, assistant in chat_history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) def create_chat_interface(): theme = gr.themes.Soft( primary_hue="blue", secondary_hue="blue", neutral_hue="slate", font=gr.themes.GoogleFont("Inter"), radius_size=gr.themes.sizes.radius_sm, ) with gr.Blocks(css=CUSTOM_CSS, theme=theme) as demo: with gr.Column(elem_classes="container"): gr.Markdown(DESCRIPTION) with gr.Column(elem_classes="chat-container"): additional_inputs = [ gr.Textbox( value="", label="System Message", elem_classes="system-message", render=False, ), ] # Create controls without context manager controls = gr.Column(elem_classes="controls-container") with controls: additional_inputs.extend([ gr.Slider( label="Maximum New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, elem_classes="slider-label", ), gr.Slider( label="Temperature", minimum=0, maximum=4.0, step=0.1, value=0.001, elem_classes="slider-label", ), gr.Slider( label="Top-p (Nucleus Sampling)", minimum=0.05, maximum=1.0, step=0.05, value=1.0, elem_classes="slider-label", ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, elem_classes="slider-label", ), gr.Slider( label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, elem_classes="slider-label", ), ]) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=additional_inputs, examples=[ ["Ciao! Come stai?"], ["Raccontami una breve storia."], ["Qual รจ il tuo piatto italiano preferito?"], ], cache_examples=False, ) gr.DuplicateButton( value="Duplicate Space for Private Use", elem_classes="duplicate-button", elem_id="duplicate-button", ) return demo if __name__ == "__main__": demo = create_chat_interface() demo.queue(max_size=20).launch()