import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import subprocess subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) # Constants and model initialization code remains the same MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "DeepMount00/Lexora-Lite-3B" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True, ) model.eval() CUSTOM_CSS = """ .container { max-width: 1000px !important; margin: auto !important; } .header { text-align: center; margin-bottom: 1rem; padding: 1rem; } .header h1 { font-size: 2rem; font-weight: 600; color: #1e293b; margin-bottom: 0.5rem; } .header p { color: #64748b; font-size: 1rem; } .chat-container { border-radius: 0.75rem; background: white; box-shadow: 0 1px 3px 0 rgb(0 0 0 / 0.1); height: calc(100vh - 200px); display: flex; flex-direction: column; } .message-container { padding: 1rem; margin-bottom: 0.5rem; } .user-message { background: #f8fafc; border-left: 3px solid #2563eb; padding: 1rem; margin: 0.5rem 0; border-radius: 0.5rem; } .assistant-message { background: white; border-left: 3px solid #64748b; padding: 1rem; margin: 0.5rem 0; border-radius: 0.5rem; } .controls-panel { position: fixed; right: 1rem; top: 1rem; width: 300px; background: white; padding: 1rem; border-radius: 0.5rem; box-shadow: 0 1px 3px 0 rgb(0 0 0 / 0.1); z-index: 1000; display: none; } .controls-button { position: fixed; right: 1rem; top: 1rem; z-index: 1001; background: #2563eb !important; color: white !important; padding: 0.5rem 1rem !important; border-radius: 0.5rem !important; font-size: 0.875rem !important; font-weight: 500 !important; } .input-area { border-top: 1px solid #e2e8f0; padding: 1rem; background: white; border-radius: 0 0 0.75rem 0.75rem; } .textbox { border: 1px solid #e2e8f0 !important; border-radius: 0.5rem !important; padding: 0.75rem !important; font-size: 1rem !important; box-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05) !important; } .textbox:focus { border-color: #2563eb !important; outline: none !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; } .submit-button { background: #2563eb !important; color: white !important; padding: 0.5rem 1rem !important; border-radius: 0.5rem !important; font-size: 0.875rem !important; font-weight: 500 !important; transition: all 0.2s !important; } .submit-button:hover { background: #1d4ed8 !important; } """ DESCRIPTION = '''

Lexora-Lite-3B Chat

An advanced Italian language model ready to assist you

''' # Generate function remains the same @spaces.GPU(duration=90) def generate( message: str, chat_history: list[tuple[str, str]], system_message: str = "", max_new_tokens: int = 2048, temperature: float = 0.0001, top_p: float = 1.0, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: conversation = [{"role": "system", "content": system_message}] for user, assistant in chat_history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) def create_chat_interface(): theme = gr.themes.Soft( primary_hue="blue", secondary_hue="slate", neutral_hue="slate", font=gr.themes.GoogleFont("Inter"), radius_size=gr.themes.sizes.radius_sm, ) with gr.Blocks(css=CUSTOM_CSS, theme=theme) as demo: gr.Markdown(DESCRIPTION) with gr.Row(): # Main chat column with gr.Column(scale=3): chat = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox( value="", label="System Message", visible=False, ), gr.Slider( label="Temperature", minimum=0, maximum=1.0, step=0.1, value=0.0001, visible=False, ), gr.Slider( label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=1.0, visible=False, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, visible=False, ), gr.Slider( label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, visible=False, ), ], examples=[ ["Ciao! Come stai?"], ["Raccontami una breve storia."], ["Qual รจ il tuo piatto italiano preferito?"], ], cache_examples=False, ) # Advanced settings panel with gr.Column(scale=1, visible=False) as settings_panel: gr.Markdown("### Advanced Settings") gr.Slider( label="Temperature", minimum=0, maximum=1.0, step=0.1, value=0.0001, ) gr.Slider( label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=1.0, ) gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ) gr.Slider( label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ) if __name__ == "__main__": demo = create_chat_interface() demo.queue(max_size=20).launch()