File size: 2,356 Bytes
56d31bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import argparse

from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from transformers import AutoTokenizer, TrainingArguments
from trainer.data import ChatDataModule
from trainer.mamba_trainer import MambaTrainer


def run(args):
    
    print("Loading Mamba {} model".format(args.model))
    model = MambaLMHeadModel.from_pretrained(args.model, dtype=torch.bfloat16, device="cuda")
    print("Loading tokenizer {}".format(args.tokenizer))
    tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
    tokenizer.eos_token = "<|endoftext|>"
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.chat_template = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta").chat_template

    print("Loading data from {}".format(args.data_path))
    data_module = ChatDataModule(
        tokenizer=tokenizer,
        data_path=args.data_path,
        conversation_template=tokenizer.chat_template,
        max_tokens=2048
    )

    print("Initializing trainer...")
    trainer = MambaTrainer(
        model=model,
        train_dataset=data_module.dataset,
        tokenizer=tokenizer,
        args=TrainingArguments(
            learning_rate=args.learning_rate,
            num_train_epochs=args.num_epochs,
            per_device_train_batch_size=args.batch_size,
            gradient_accumulation_steps=args.gradient_accumulation_steps,
            optim=args.optim,
            output_dir="mamba-chat",
            logging_steps=50,
            save_steps=500,
        ),
        data_collator=data_module.data_collator,
    )
    print("Training started...")
    trainer.train()
    print("Training finished!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="state-spaces/mamba-130m")
    parser.add_argument("--tokenizer", type=str, default="EleutherAI/gpt-neox-20b")
    parser.add_argument("--learning_rate", type=float, default=5e-5)
    parser.add_argument("--batch_size", type=int, default=4)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--optim", type=str, default="adamw_torch")
    parser.add_argument("--data_path", type=str, default="./data/ultrachat_small.jsonl")
    parser.add_argument("--num_epochs", type=int, default=1)
    args = parser.parse_args()

    run(args)