Mamba-Trainer / chat.py
Pratik Dwivedi
trainer commit (#1)
56d31bf
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("havenhq/mamba-chat")
tokenizer.eos_token = "<|endoftext|>"
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta").chat_template
model = MambaLMHeadModel.from_pretrained("havenhq/mamba-chat", device="cuda", dtype=torch.float16)
messages = []
while True:
user_message = input("\nYour message: ")
messages.append(dict(
role="user",
content=user_message
))
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
out = model.generate(input_ids=input_ids, max_length=2000, temperature=0.9, top_p=0.7, eos_token_id=tokenizer.eos_token_id)
decoded = tokenizer.batch_decode(out)
messages.append(dict(
role="assistant",
content=decoded[0].split("<|assistant|>\n")[-1])
)
print("Model:", decoded[0].split("<|assistant|>\n")[-1])