import torch import torch.nn as nn from networks.encoder import Encoder from networks.styledecoder import Synthesis # This part is modified from: https://github.com/wyhsirius/LIA class LIA_Model(torch.nn.Module): def __init__(self, size = 256, style_dim = 512, motion_dim = 20, channel_multiplier=1, blur_kernel=[1, 3, 3, 1], fusion_type=''): super().__init__() self.enc = Encoder(size, style_dim, motion_dim, fusion_type) self.dec = Synthesis(size, style_dim, motion_dim, blur_kernel, channel_multiplier) def get_start_direction_code(self, x_start, x_target, x_face, x_aug): enc_dic = self.enc(x_start, x_target, x_face, x_aug) wa, alpha, feats = enc_dic['h_source'], enc_dic['h_motion'], enc_dic['feats'] return wa, alpha, feats def render(self, start, direction, feats): return self.dec(start, direction, feats) def load_lightning_model(self, lia_pretrained_model_path): selfState = self.state_dict() state = torch.load(lia_pretrained_model_path, map_location='cpu') for name, param in state.items(): origName = name; if name not in selfState: name = name.replace("lia.", "") if name not in selfState: print("%s is not in the model."%origName) # You can ignore those errors as some parameters are only used for training continue if selfState[name].size() != state[origName].size(): print("Wrong parameter length: %s, model: %s, loaded: %s"%(origName, selfState[name].size(), state[origName].size())) continue selfState[name].copy_(param)