|
import gradio as gr |
|
import re |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "Dennterry/okt_bot" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
inputs = tokenizer(f'@@ПЕРВЫЙ@@{message}@@ВТОРОЙ@@', return_tensors='pt') |
|
|
|
generated_token_ids = model.generate( |
|
**inputs, |
|
top_k=50, |
|
top_p=top_p, |
|
num_beams=5, |
|
num_return_sequences=3, |
|
do_sample=True, |
|
no_repeat_ngram_size=2, |
|
temperature=temperature, |
|
repetition_penalty=1.5, |
|
length_penalty=0.6, |
|
eos_token_id=50257, |
|
max_new_tokens=max_tokens |
|
) |
|
|
|
|
|
context_with_response = [tokenizer.decode(sample_token_ids) for sample_token_ids in generated_token_ids] |
|
result1 = re.sub(r'@@.*?@@', '', context_with_response[0]) |
|
result2 = result1[len(message):] |
|
yield result2.strip() |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Чебупели", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, step=0.05, label="Top-p (nucleus sampling)" |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|