Spaces:
Sleeping
Sleeping
File size: 3,823 Bytes
7fafac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import streamlit as st
import json
from io import BytesIO
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import os
def save_feedback_og(feedback):
feedback_file = 'feedback_data.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
else:
feedback_data = []
# tpl = {
# 'question' : question,
# 'answer' : answer,
# 'context' : context,
# 'options' : options,
# 'rating' : rating,
# }
# feedback_data[question] = rating
feedback_data.append(feedback)
print(feedback_data)
with open(feedback_file, 'w') as f:
json.dump(feedback_data, f)
st.session_state.feedback_data.append(feedback)
return feedback_file
def collect_feedback(i,question, answer, context, options):
st.write("Please provide feedback for this question:")
edited_question = st.text_input("Enter improved question",value=question,key=f'fdx1{i}')
clarity = st.slider("Clarity", 1, 5, 3, help="1 = Very unclear, 5 = Very clear",key=f'fdx2{i}')
difficulty = st.slider("Difficulty", 1, 5, 3, help="1 = Very easy, 5 = Very difficult",key=f'fdx3{i}')
relevance = st.slider("Relevance", 1, 5, 3, help="1 = Not relevant, 5 = Highly relevant",key=f'fdx4{i}')
option_quality = st.slider("Quality of Options", 1, 5, 3, help="1 = Poor options, 5 = Excellent options",key=f'fdx5{i}')
overall_rating = st.slider("Overall Rating", 1, 5, 3, help="1 = Poor, 5 = Excellent",key=f'fdx6{i}')
comments = st.text_input("Additional Comments", "",key=f'fdx7{i}')
if st.button("Submit Feedback",key=f'fdx8{i}'):
feedback = {
"context": context,
"question": question,
'edited_question':edited_question,
"answer": answer,
"options": options,
"clarity": clarity,
"difficulty": difficulty,
"relevance": relevance,
"option_quality": option_quality,
"overall_rating": overall_rating,
"comments": comments
}
# save_feedback(feedback)
save_feedback_og(feedback)
st.success("Thank you for your feedback!")
def analyze_feedback():
if not st.session_state.feedback_data:
st.warning("No feedback data available yet.")
return
df = pd.DataFrame(st.session_state.feedback_data)
st.write("Feedback Analysis")
st.write(f"Total feedback collected: {len(df)}")
metrics = ['clarity', 'difficulty', 'relevance', 'option_quality', 'overall_rating']
for metric in metrics:
fig, ax = plt.subplots()
df[metric].value_counts().sort_index().plot(kind='bar', ax=ax)
plt.title(f"Distribution of {metric.capitalize()} Ratings")
plt.xlabel("Rating")
plt.ylabel("Count")
st.pyplot(fig)
st.write("Average Ratings:")
st.write(df[metrics].mean())
# Word cloud of comments
comments = " ".join(df['comments'])
if len(comments) > 1:
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(comments)
fig, ax = plt.subplots()
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
st.pyplot(fig)
def export_feedback_data():
if not st.session_state.feedback_data:
st.warning("No feedback data available.")
return None
# Convert feedback data to JSON
json_data = json.dumps(st.session_state.feedback_data, indent=2)
# Create a BytesIO object
buffer = BytesIO()
buffer.write(json_data.encode())
buffer.seek(0)
return buffer |