Spaces:
Sleeping
Sleeping
import nltk | |
import random | |
import asyncio | |
nltk.download('wordnet') | |
from nltk.corpus import wordnet | |
from sentence_transformers import util | |
from load_models import load_nlp_models, load_llama, load_qa_models | |
from utils import QuestionGenerationError | |
nlp, s2v = load_nlp_models() | |
llm = load_llama() | |
similarity_model, spell = load_qa_models() | |
context_model = similarity_model | |
def get_similar_words_sense2vec(word, n=3): | |
# Try to find the word with its most likely part-of-speech | |
word_with_pos = word + "|NOUN" | |
if word_with_pos in s2v: | |
similar_words = s2v.most_similar(word_with_pos, n=n) | |
return [word.split("|")[0] for word, _ in similar_words] | |
# If not found, try without POS | |
if word in s2v: | |
similar_words = s2v.most_similar(word, n=n) | |
return [word.split("|")[0] for word, _ in similar_words] | |
return [] | |
def get_synonyms(word, n=3): | |
synonyms = [] | |
for syn in wordnet.synsets(word): | |
for lemma in syn.lemmas(): | |
if lemma.name() != word and lemma.name() not in synonyms: | |
synonyms.append(lemma.name()) | |
if len(synonyms) == n: | |
return synonyms | |
return synonyms | |
def gen_options(answer,context,question): | |
prompt=f'''Given the following context, question, and correct answer, | |
generate {4} incorrect but plausible answer options. The options should be: | |
1. Contextually related to the given context | |
2. Grammatically consistent with the question | |
3. Different from the correct answer | |
4. Not explicitly mentioned in the given context | |
Context: {context} | |
Question: {question} | |
Correct Answer: {answer} | |
Provide the options in a semi colon-separated list. Output must contain only the options and nothing else. | |
''' | |
options= [answer] | |
response = llm.invoke(prompt, stop=['<|eot_id|>']) | |
incorrect_options = [option.strip() for option in response.split(';')] | |
options.extend(incorrect_options) | |
random.shuffle(options) | |
print(options) | |
return options | |
# print(response) | |
def generate_options(answer, context, n=3): | |
options = [answer] | |
# Add contextually relevant words using a pre-trained model | |
context_embedding = context_model.encode(context) | |
answer_embedding = context_model.encode(answer) | |
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()] | |
# Compute similarity scores and sort context words | |
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words] | |
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)] | |
options.extend(sorted_context_words[:n]) | |
# Try to get similar words based on sense2vec | |
similar_words = get_similar_words_sense2vec(answer, n) | |
options.extend(similar_words) | |
# If we don't have enough options, try synonyms | |
if len(options) < n + 1: | |
synonyms = get_synonyms(answer, n - len(options) + 1) | |
options.extend(synonyms) | |
# If we still don't have enough options, extract other entities from the context | |
if len(options) < n + 1: | |
doc = nlp(context) | |
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()] | |
options.extend(entities[:n - len(options) + 1]) | |
# If we still need more options, add some random words from the context | |
if len(options) < n + 1: | |
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()] | |
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words)))) | |
print(f"\n\nAll Possible Options: {options}\n\n") | |
# Ensure we have the correct number of unique options | |
options = list(dict.fromkeys(options))[:n+1] | |
# Shuffle the options | |
random.shuffle(options) | |
return options | |
async def generate_options_async(answer, context, n=3): | |
try: | |
options = [answer] | |
# Add contextually relevant words using a pre-trained model | |
context_embedding = await asyncio.to_thread(context_model.encode, context) | |
answer_embedding = await asyncio.to_thread(context_model.encode, answer) | |
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()] | |
# Compute similarity scores and sort context words | |
similarity_scores = [util.pytorch_cos_sim(await asyncio.to_thread(context_model.encode, word), answer_embedding).item() for word in context_words] | |
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)] | |
options.extend(sorted_context_words[:n]) | |
# Try to get similar words based on sense2vec | |
similar_words = await asyncio.to_thread(get_similar_words_sense2vec, answer, n) | |
options.extend(similar_words) | |
# If we don't have enough options, try synonyms | |
if len(options) < n + 1: | |
synonyms = await asyncio.to_thread(get_synonyms, answer, n - len(options) + 1) | |
options.extend(synonyms) | |
# Ensure we have the correct number of unique options | |
options = list(dict.fromkeys(options))[:n+1] | |
# Shuffle the options | |
random.shuffle(options) | |
return options | |
except Exception as e: | |
raise QuestionGenerationError(f"Error in generating options: {str(e)}") | |