Spaces:
Sleeping
Sleeping
Commit
•
03f344d
1
Parent(s):
90f21b4
Update app into modularized components (#4)
Browse files- Update app into modularized components (ab9b628e0d6d7f771ba98507ffbec2e5b7625899)
Co-authored-by: Thakkar Aneri Pareshkumar <AneriThakkar@users.noreply.huggingface.co>
app.py
CHANGED
@@ -1,50 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
-
import spacy
|
4 |
-
import nltk
|
5 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
-
from rake_nltk import Rake
|
7 |
-
import pandas as pd
|
8 |
-
from fpdf import FPDF
|
9 |
-
import wikipediaapi
|
10 |
-
from functools import lru_cache
|
11 |
-
nltk.download('punkt')
|
12 |
-
nltk.download('stopwords')
|
13 |
-
nltk.download('brown')
|
14 |
-
from nltk.tokenize import sent_tokenize
|
15 |
-
nltk.download('wordnet')
|
16 |
-
from nltk.corpus import wordnet
|
17 |
-
import random
|
18 |
-
import sense2vec
|
19 |
-
from wordcloud import WordCloud
|
20 |
-
import matplotlib.pyplot as plt
|
21 |
-
import json
|
22 |
-
import os
|
23 |
-
from sentence_transformers import SentenceTransformer, util
|
24 |
-
import textstat
|
25 |
-
from spellchecker import SpellChecker
|
26 |
-
from transformers import pipeline
|
27 |
-
import re
|
28 |
-
import pymupdf
|
29 |
-
import uuid
|
30 |
-
import time
|
31 |
-
import asyncio
|
32 |
-
import aiohttp
|
33 |
-
from datetime import datetime
|
34 |
-
import base64
|
35 |
-
from io import BytesIO
|
36 |
-
# '-----------------'
|
37 |
-
import smtplib
|
38 |
-
from email.mime.multipart import MIMEMultipart
|
39 |
-
from email.mime.text import MIMEText
|
40 |
-
from email.mime.base import MIMEBase
|
41 |
-
from email.mime.application import MIMEApplication
|
42 |
-
from email import encoders
|
43 |
-
# '------------------'
|
44 |
-
from gliner import GLiNER
|
45 |
-
# -------------------
|
46 |
-
|
47 |
-
print("***************************************************************")
|
48 |
|
49 |
st.set_page_config(
|
50 |
page_icon='cyclone',
|
@@ -55,62 +9,19 @@ st.set_page_config(
|
|
55 |
}
|
56 |
)
|
57 |
|
58 |
-
st.set_option('deprecation.showPyplotGlobalUse',False)
|
59 |
-
|
60 |
-
class QuestionGenerationError(Exception):
|
61 |
-
"""Custom exception for question generation errors."""
|
62 |
-
pass
|
63 |
-
|
64 |
-
|
65 |
-
# Initialize Wikipedia API with a user agent
|
66 |
-
user_agent = 'QGen/1.2'
|
67 |
-
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
68 |
-
|
69 |
-
def get_session_id():
|
70 |
-
if 'session_id' not in st.session_state:
|
71 |
-
st.session_state.session_id = str(uuid.uuid4())
|
72 |
-
return st.session_state.session_id
|
73 |
-
|
74 |
-
def initialize_state(session_id):
|
75 |
-
if 'session_states' not in st.session_state:
|
76 |
-
st.session_state.session_states = {}
|
77 |
-
|
78 |
-
if session_id not in st.session_state.session_states:
|
79 |
-
st.session_state.session_states[session_id] = {
|
80 |
-
'generated_questions': [],
|
81 |
-
# add other state variables as needed
|
82 |
-
}
|
83 |
-
return st.session_state.session_states[session_id]
|
84 |
-
|
85 |
-
def get_state(session_id):
|
86 |
-
return st.session_state.session_states[session_id]
|
87 |
-
|
88 |
-
def set_state(session_id, key, value):
|
89 |
-
st.session_state.session_states[session_id][key] = value
|
90 |
-
|
91 |
-
|
92 |
-
@st.cache_resource
|
93 |
-
def load_model(modelname):
|
94 |
-
model_name = modelname
|
95 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
96 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
97 |
-
return model, tokenizer
|
98 |
-
|
99 |
-
# Load Spacy Model
|
100 |
-
@st.cache_resource
|
101 |
-
def load_nlp_models():
|
102 |
-
nlp = spacy.load("en_core_web_md")
|
103 |
-
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
|
104 |
-
return nlp, s2v
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
return similarity_model, spell
|
114 |
|
115 |
with st.sidebar:
|
116 |
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
|
@@ -118,518 +29,8 @@ if select_model == "T5-large":
|
|
118 |
modelname = "DevBM/t5-large-squad"
|
119 |
elif select_model == "T5-small":
|
120 |
modelname = "AneriThakkar/flan-t5-small-finetuned"
|
121 |
-
nlp, s2v = load_nlp_models()
|
122 |
-
similarity_model, spell = load_qa_models()
|
123 |
-
context_model = similarity_model
|
124 |
-
model, tokenizer = load_model(modelname)
|
125 |
-
|
126 |
-
|
127 |
-
# Info Section
|
128 |
-
def display_info():
|
129 |
-
st.sidebar.title("Information")
|
130 |
-
st.sidebar.markdown("""
|
131 |
-
### Question Generator System
|
132 |
-
This system is designed to generate questions based on the provided context. It uses various NLP techniques and models to:
|
133 |
-
- Extract keywords from the text
|
134 |
-
- Map keywords to sentences
|
135 |
-
- Generate questions
|
136 |
-
- Provide multiple choice options
|
137 |
-
- Assess the quality of generated questions
|
138 |
-
|
139 |
-
#### Key Features:
|
140 |
-
- **Keyword Extraction:** Combines RAKE, TF-IDF, and spaCy for comprehensive keyword extraction.
|
141 |
-
- **Question Generation:** Utilizes a pre-trained T5 model for generating questions.
|
142 |
-
- **Options Generation:** Creates contextually relevant multiple-choice options.
|
143 |
-
- **Question Assessment:** Scores questions based on relevance, complexity, and spelling correctness.
|
144 |
-
- **Feedback Collection:** Allows users to rate the generated questions and provides statistics on feedback.
|
145 |
-
|
146 |
-
#### Customization Options:
|
147 |
-
- Number of beams for question generation
|
148 |
-
- Context window size for mapping keywords to sentences
|
149 |
-
- Number of questions to generate
|
150 |
-
- Additional display elements (context, answer, options, entity link, QA scores)
|
151 |
-
|
152 |
-
#### Outputs:
|
153 |
-
- Generated questions with multiple-choice options
|
154 |
-
- Download options for CSV and PDF formats
|
155 |
-
- Visualization of overall scores
|
156 |
-
|
157 |
-
""")
|
158 |
-
|
159 |
-
def get_pdf_text(pdf_file):
|
160 |
-
doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
|
161 |
-
text = ""
|
162 |
-
for page_num in range(doc.page_count):
|
163 |
-
page = doc.load_page(page_num)
|
164 |
-
text += page.get_text()
|
165 |
-
return text
|
166 |
-
|
167 |
-
def save_feedback_og(question, answer, rating, options, context):
|
168 |
-
feedback_file = 'question_feedback.json'
|
169 |
-
if os.path.exists(feedback_file):
|
170 |
-
with open(feedback_file, 'r') as f:
|
171 |
-
feedback_data = json.load(f)
|
172 |
-
else:
|
173 |
-
feedback_data = []
|
174 |
-
tpl = {
|
175 |
-
'question' : question,
|
176 |
-
'answer' : answer,
|
177 |
-
'context' : context,
|
178 |
-
'options' : options,
|
179 |
-
'rating' : rating,
|
180 |
-
}
|
181 |
-
# feedback_data[question] = rating
|
182 |
-
feedback_data.append(tpl)
|
183 |
-
print(feedback_data)
|
184 |
-
with open(feedback_file, 'w') as f:
|
185 |
-
json.dump(feedback_data, f)
|
186 |
-
|
187 |
-
return feedback_file
|
188 |
-
|
189 |
-
# -----------------------------------------------------------------------------------------
|
190 |
-
def send_email_with_attachment(email_subject, email_body, recipient_emails, sender_email, sender_password, attachment):
|
191 |
-
smtp_server = "smtp.gmail.com" # Replace with your SMTP server
|
192 |
-
smtp_port = 587 # Replace with your SMTP port
|
193 |
-
|
194 |
-
# Create the email message
|
195 |
-
message = MIMEMultipart()
|
196 |
-
message['From'] = sender_email
|
197 |
-
message['To'] = ", ".join(recipient_emails)
|
198 |
-
message['Subject'] = email_subject
|
199 |
-
message.attach(MIMEText(email_body, 'plain'))
|
200 |
-
|
201 |
-
# Attach the feedback data if available
|
202 |
-
if attachment:
|
203 |
-
attachment_part = MIMEApplication(attachment.getvalue(), Name="feedback_data.json")
|
204 |
-
attachment_part['Content-Disposition'] = f'attachment; filename="feedback_data.json"'
|
205 |
-
message.attach(attachment_part)
|
206 |
-
|
207 |
-
# Send the email
|
208 |
-
try:
|
209 |
-
with smtplib.SMTP(smtp_server, smtp_port) as server:
|
210 |
-
server.starttls()
|
211 |
-
print(sender_email)
|
212 |
-
print(sender_password)
|
213 |
-
server.login(sender_email, sender_password)
|
214 |
-
text = message.as_string()
|
215 |
-
server.sendmail(sender_email, recipient_emails, text)
|
216 |
-
return True
|
217 |
-
except Exception as e:
|
218 |
-
st.error(f"Failed to send email: {str(e)}")
|
219 |
-
return False
|
220 |
-
# ----------------------------------------------------------------------------------
|
221 |
-
|
222 |
-
def collect_feedback(i,question, answer, context, options):
|
223 |
-
st.write("Please provide feedback for this question:")
|
224 |
-
edited_question = st.text_input("Enter improved question",value=question,key=f'fdx1{i}')
|
225 |
-
clarity = st.slider("Clarity", 1, 5, 3, help="1 = Very unclear, 5 = Very clear",key=f'fdx2{i}')
|
226 |
-
difficulty = st.slider("Difficulty", 1, 5, 3, help="1 = Very easy, 5 = Very difficult",key=f'fdx3{i}')
|
227 |
-
relevance = st.slider("Relevance", 1, 5, 3, help="1 = Not relevant, 5 = Highly relevant",key=f'fdx4{i}')
|
228 |
-
option_quality = st.slider("Quality of Options", 1, 5, 3, help="1 = Poor options, 5 = Excellent options",key=f'fdx5{i}')
|
229 |
-
overall_rating = st.slider("Overall Rating", 1, 5, 3, help="1 = Poor, 5 = Excellent",key=f'fdx6{i}')
|
230 |
-
comments = st.text_input("Additional Comments", "",key=f'fdx7{i}')
|
231 |
-
|
232 |
-
if st.button("Submit Feedback",key=f'fdx8{i}'):
|
233 |
-
feedback = {
|
234 |
-
"question": question,
|
235 |
-
'edited_question':edited_question,
|
236 |
-
"answer": answer,
|
237 |
-
"options": options,
|
238 |
-
"clarity": clarity,
|
239 |
-
"difficulty": difficulty,
|
240 |
-
"relevance": relevance,
|
241 |
-
"option_quality": option_quality,
|
242 |
-
"overall_rating": overall_rating,
|
243 |
-
"comments": comments
|
244 |
-
}
|
245 |
-
save_feedback(feedback)
|
246 |
-
st.success("Thank you for your feedback!")
|
247 |
-
|
248 |
-
def save_feedback(feedback):
|
249 |
-
st.session_state.feedback_data.append(feedback)
|
250 |
-
|
251 |
-
def analyze_feedback():
|
252 |
-
if not st.session_state.feedback_data:
|
253 |
-
st.warning("No feedback data available yet.")
|
254 |
-
return
|
255 |
-
|
256 |
-
df = pd.DataFrame(st.session_state.feedback_data)
|
257 |
-
|
258 |
-
st.write("Feedback Analysis")
|
259 |
-
st.write(f"Total feedback collected: {len(df)}")
|
260 |
-
|
261 |
-
metrics = ['clarity', 'difficulty', 'relevance', 'option_quality', 'overall_rating']
|
262 |
-
|
263 |
-
for metric in metrics:
|
264 |
-
fig, ax = plt.subplots()
|
265 |
-
df[metric].value_counts().sort_index().plot(kind='bar', ax=ax)
|
266 |
-
plt.title(f"Distribution of {metric.capitalize()} Ratings")
|
267 |
-
plt.xlabel("Rating")
|
268 |
-
plt.ylabel("Count")
|
269 |
-
st.pyplot(fig)
|
270 |
-
|
271 |
-
st.write("Average Ratings:")
|
272 |
-
st.write(df[metrics].mean())
|
273 |
-
|
274 |
-
# Word cloud of comments
|
275 |
-
comments = " ".join(df['comments'])
|
276 |
-
if len(comments) > 1:
|
277 |
-
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(comments)
|
278 |
-
fig, ax = plt.subplots()
|
279 |
-
plt.imshow(wordcloud, interpolation='bilinear')
|
280 |
-
plt.axis("off")
|
281 |
-
st.pyplot(fig)
|
282 |
-
|
283 |
-
|
284 |
-
def export_feedback_data():
|
285 |
-
if not st.session_state.feedback_data:
|
286 |
-
st.warning("No feedback data available.")
|
287 |
-
return None
|
288 |
-
|
289 |
-
# Convert feedback data to JSON
|
290 |
-
json_data = json.dumps(st.session_state.feedback_data, indent=2)
|
291 |
-
|
292 |
-
# Create a BytesIO object
|
293 |
-
buffer = BytesIO()
|
294 |
-
buffer.write(json_data.encode())
|
295 |
-
buffer.seek(0)
|
296 |
-
|
297 |
-
return buffer
|
298 |
-
|
299 |
-
# Function to clean text
|
300 |
-
def clean_text(text):
|
301 |
-
text = re.sub(r"[^\x00-\x7F]", " ", text)
|
302 |
-
text = re.sub(f"[\n]"," ", text)
|
303 |
-
return text
|
304 |
-
|
305 |
-
# Function to create text chunks
|
306 |
-
def segment_text(text, max_segment_length=700, batch_size=7):
|
307 |
-
sentences = sent_tokenize(text)
|
308 |
-
segments = []
|
309 |
-
current_segment = ""
|
310 |
-
|
311 |
-
for sentence in sentences:
|
312 |
-
if len(current_segment) + len(sentence) <= max_segment_length:
|
313 |
-
current_segment += sentence + " "
|
314 |
-
else:
|
315 |
-
segments.append(current_segment.strip())
|
316 |
-
current_segment = sentence + " "
|
317 |
-
|
318 |
-
if current_segment:
|
319 |
-
segments.append(current_segment.strip())
|
320 |
-
|
321 |
-
# Create batches
|
322 |
-
batches = [segments[i:i + batch_size] for i in range(0, len(segments), batch_size)]
|
323 |
-
return batches
|
324 |
-
|
325 |
-
|
326 |
-
# Function to extract keywords using combined techniques
|
327 |
-
def extract_keywords(text, extract_all):
|
328 |
-
try:
|
329 |
-
gliner_model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5")
|
330 |
-
labels = ["person", "organization", "email", "Award", "Date", "Competitions", "Teams", "location", "percentage", "money"]
|
331 |
-
entities = gliner_model.predict_entities(text, labels, threshold=0.7)
|
332 |
-
|
333 |
-
gliner_keywords = list(set([ent["text"] for ent in entities]))
|
334 |
-
print(f"Gliner keywords:{gliner_keywords}")
|
335 |
-
# Use Only Gliner Entities
|
336 |
-
if extract_all is False:
|
337 |
-
return list(gliner_keywords)
|
338 |
-
|
339 |
-
doc = nlp(text)
|
340 |
-
spacy_keywords = set([ent.text for ent in doc.ents])
|
341 |
-
spacy_entities = spacy_keywords
|
342 |
-
print(f"\n\nSpacy Entities: {spacy_entities} \n\n")
|
343 |
-
|
344 |
-
#
|
345 |
-
# if extract_all is False:
|
346 |
-
# return list(spacy_entities)
|
347 |
-
|
348 |
-
# Use RAKE
|
349 |
-
rake = Rake()
|
350 |
-
rake.extract_keywords_from_text(text)
|
351 |
-
rake_keywords = set(rake.get_ranked_phrases())
|
352 |
-
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
|
353 |
-
# Use spaCy for NER and POS tagging
|
354 |
-
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
|
355 |
-
print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
|
356 |
-
# Use TF-IDF
|
357 |
-
vectorizer = TfidfVectorizer(stop_words='english')
|
358 |
-
X = vectorizer.fit_transform([text])
|
359 |
-
tfidf_keywords = set(vectorizer.get_feature_names_out())
|
360 |
-
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
|
361 |
-
|
362 |
-
# Combine all keywords
|
363 |
-
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords).union(gliner_keywords)
|
364 |
-
|
365 |
-
return list(combined_keywords)
|
366 |
-
except Exception as e:
|
367 |
-
raise QuestionGenerationError(f"Error in keyword extraction: {str(e)}")
|
368 |
-
|
369 |
-
def get_similar_words_sense2vec(word, n=3):
|
370 |
-
# Try to find the word with its most likely part-of-speech
|
371 |
-
word_with_pos = word + "|NOUN"
|
372 |
-
if word_with_pos in s2v:
|
373 |
-
similar_words = s2v.most_similar(word_with_pos, n=n)
|
374 |
-
return [word.split("|")[0] for word, _ in similar_words]
|
375 |
-
|
376 |
-
# If not found, try without POS
|
377 |
-
if word in s2v:
|
378 |
-
similar_words = s2v.most_similar(word, n=n)
|
379 |
-
return [word.split("|")[0] for word, _ in similar_words]
|
380 |
-
|
381 |
-
return []
|
382 |
-
|
383 |
-
def get_synonyms(word, n=3):
|
384 |
-
synonyms = []
|
385 |
-
for syn in wordnet.synsets(word):
|
386 |
-
for lemma in syn.lemmas():
|
387 |
-
if lemma.name() != word and lemma.name() not in synonyms:
|
388 |
-
synonyms.append(lemma.name())
|
389 |
-
if len(synonyms) == n:
|
390 |
-
return synonyms
|
391 |
-
return synonyms
|
392 |
-
|
393 |
-
def generate_options(answer, context, n=3):
|
394 |
-
options = [answer]
|
395 |
-
|
396 |
-
# Add contextually relevant words using a pre-trained model
|
397 |
-
context_embedding = context_model.encode(context)
|
398 |
-
answer_embedding = context_model.encode(answer)
|
399 |
-
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
400 |
-
|
401 |
-
# Compute similarity scores and sort context words
|
402 |
-
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
|
403 |
-
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
|
404 |
-
options.extend(sorted_context_words[:n])
|
405 |
-
|
406 |
-
# Try to get similar words based on sense2vec
|
407 |
-
similar_words = get_similar_words_sense2vec(answer, n)
|
408 |
-
options.extend(similar_words)
|
409 |
-
|
410 |
-
# If we don't have enough options, try synonyms
|
411 |
-
if len(options) < n + 1:
|
412 |
-
synonyms = get_synonyms(answer, n - len(options) + 1)
|
413 |
-
options.extend(synonyms)
|
414 |
-
|
415 |
-
# If we still don't have enough options, extract other entities from the context
|
416 |
-
if len(options) < n + 1:
|
417 |
-
doc = nlp(context)
|
418 |
-
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
|
419 |
-
options.extend(entities[:n - len(options) + 1])
|
420 |
-
|
421 |
-
# If we still need more options, add some random words from the context
|
422 |
-
if len(options) < n + 1:
|
423 |
-
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
424 |
-
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
|
425 |
-
print(f"\n\nAll Possible Options: {options}\n\n")
|
426 |
-
# Ensure we have the correct number of unique options
|
427 |
-
options = list(dict.fromkeys(options))[:n+1]
|
428 |
-
|
429 |
-
# Shuffle the options
|
430 |
-
random.shuffle(options)
|
431 |
-
|
432 |
-
return options
|
433 |
-
|
434 |
-
# Function to map keywords to sentences with customizable context window size
|
435 |
-
def map_keywords_to_sentences(text, keywords, context_window_size):
|
436 |
-
sentences = sent_tokenize(text)
|
437 |
-
keyword_sentence_mapping = {}
|
438 |
-
print(f"\n\nSentences: {sentences}\n\n")
|
439 |
-
for keyword in keywords:
|
440 |
-
for i, sentence in enumerate(sentences):
|
441 |
-
if keyword in sentence:
|
442 |
-
# Combine current sentence with surrounding sentences for context
|
443 |
-
# start = max(0, i - context_window_size)
|
444 |
-
# end = min(len(sentences), i + context_window_size + 1)
|
445 |
-
start = max(0,i - context_window_size)
|
446 |
-
context_sentenses = sentences[start:i+1]
|
447 |
-
context = ' '.join(context_sentenses)
|
448 |
-
# context = ' '.join(sentences[start:end])
|
449 |
-
if keyword not in keyword_sentence_mapping:
|
450 |
-
keyword_sentence_mapping[keyword] = context
|
451 |
-
else:
|
452 |
-
keyword_sentence_mapping[keyword] += ' ' + context
|
453 |
-
return keyword_sentence_mapping
|
454 |
-
|
455 |
-
|
456 |
-
# Function to perform entity linking using Wikipedia API
|
457 |
-
@lru_cache(maxsize=128)
|
458 |
-
def entity_linking(keyword):
|
459 |
-
page = wiki_wiki.page(keyword)
|
460 |
-
if page.exists():
|
461 |
-
return page.fullurl
|
462 |
-
return None
|
463 |
-
|
464 |
-
async def generate_question_async(context, answer, num_beams):
|
465 |
-
try:
|
466 |
-
input_text = f"<context> {context} <answer> {answer}"
|
467 |
-
print(f"\n{input_text}\n")
|
468 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
469 |
-
outputs = await asyncio.to_thread(model.generate, input_ids, num_beams=num_beams, early_stopping=True, max_length=250)
|
470 |
-
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
471 |
-
print(f"\n{question}\n")
|
472 |
-
return question
|
473 |
-
except Exception as e:
|
474 |
-
raise QuestionGenerationError(f"Error in question generation: {str(e)}")
|
475 |
-
|
476 |
-
async def generate_options_async(answer, context, n=3):
|
477 |
-
try:
|
478 |
-
options = [answer]
|
479 |
-
|
480 |
-
# Add contextually relevant words using a pre-trained model
|
481 |
-
context_embedding = await asyncio.to_thread(context_model.encode, context)
|
482 |
-
answer_embedding = await asyncio.to_thread(context_model.encode, answer)
|
483 |
-
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
484 |
-
|
485 |
-
# Compute similarity scores and sort context words
|
486 |
-
similarity_scores = [util.pytorch_cos_sim(await asyncio.to_thread(context_model.encode, word), answer_embedding).item() for word in context_words]
|
487 |
-
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
|
488 |
-
options.extend(sorted_context_words[:n])
|
489 |
-
|
490 |
-
# Try to get similar words based on sense2vec
|
491 |
-
similar_words = await asyncio.to_thread(get_similar_words_sense2vec, answer, n)
|
492 |
-
options.extend(similar_words)
|
493 |
-
|
494 |
-
# If we don't have enough options, try synonyms
|
495 |
-
if len(options) < n + 1:
|
496 |
-
synonyms = await asyncio.to_thread(get_synonyms, answer, n - len(options) + 1)
|
497 |
-
options.extend(synonyms)
|
498 |
-
|
499 |
-
# Ensure we have the correct number of unique options
|
500 |
-
options = list(dict.fromkeys(options))[:n+1]
|
501 |
-
|
502 |
-
# Shuffle the options
|
503 |
-
random.shuffle(options)
|
504 |
-
|
505 |
-
return options
|
506 |
-
except Exception as e:
|
507 |
-
raise QuestionGenerationError(f"Error in generating options: {str(e)}")
|
508 |
-
|
509 |
-
|
510 |
-
# Function to generate questions using beam search
|
511 |
-
async def generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords):
|
512 |
-
try:
|
513 |
-
batches = segment_text(text)
|
514 |
-
keywords = extract_keywords(text, extract_all_keywords)
|
515 |
-
all_questions = []
|
516 |
-
|
517 |
-
progress_bar = st.progress(0)
|
518 |
-
status_text = st.empty()
|
519 |
-
|
520 |
-
for i, batch in enumerate(batches):
|
521 |
-
status_text.text(f"Processing batch {i+1} of {len(batches)}...")
|
522 |
-
batch_questions = await process_batch(batch, keywords, context_window_size, num_beams)
|
523 |
-
all_questions.extend(batch_questions)
|
524 |
-
progress_bar.progress((i + 1) / len(batches))
|
525 |
-
|
526 |
-
if len(all_questions) >= num_questions:
|
527 |
-
break
|
528 |
-
|
529 |
-
progress_bar.empty()
|
530 |
-
status_text.empty()
|
531 |
-
|
532 |
-
return all_questions[:num_questions]
|
533 |
-
except QuestionGenerationError as e:
|
534 |
-
st.error(f"An error occurred during question generation: {str(e)}")
|
535 |
-
return []
|
536 |
-
except Exception as e:
|
537 |
-
st.error(f"An unexpected error occurred: {str(e)}")
|
538 |
-
return []
|
539 |
-
|
540 |
-
async def generate_fill_in_the_blank_questions(context,answer):
|
541 |
-
answerSize = len(answer)
|
542 |
-
replacedBlanks = ""
|
543 |
-
for i in range(answerSize):
|
544 |
-
replacedBlanks += "_"
|
545 |
-
blank_q = context.replace(answer,replacedBlanks)
|
546 |
-
return blank_q
|
547 |
-
|
548 |
-
async def process_batch(batch, keywords, context_window_size, num_beams):
|
549 |
-
questions = []
|
550 |
-
for text in batch:
|
551 |
-
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
552 |
-
for keyword, context in keyword_sentence_mapping.items():
|
553 |
-
question = await generate_question_async(context, keyword, num_beams)
|
554 |
-
options = await generate_options_async(keyword, context)
|
555 |
-
blank_question = await generate_fill_in_the_blank_questions(context,keyword)
|
556 |
-
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context, question, keyword)
|
557 |
-
if overall_score >= 0.5:
|
558 |
-
questions.append({
|
559 |
-
"question": question,
|
560 |
-
"context": context,
|
561 |
-
"answer": keyword,
|
562 |
-
"options": options,
|
563 |
-
"overall_score": overall_score,
|
564 |
-
"relevance_score": relevance_score,
|
565 |
-
"complexity_score": complexity_score,
|
566 |
-
"spelling_correctness": spelling_correctness,
|
567 |
-
"blank_question": blank_question,
|
568 |
-
})
|
569 |
-
return questions
|
570 |
-
|
571 |
-
# Function to export questions to CSV
|
572 |
-
def export_to_csv(data):
|
573 |
-
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
|
574 |
-
df = pd.DataFrame(data)
|
575 |
-
# csv = df.to_csv(index=False,encoding='utf-8')
|
576 |
-
csv = df.to_csv(index=False)
|
577 |
-
return csv
|
578 |
-
|
579 |
-
# Function to export questions to PDF
|
580 |
-
def export_to_pdf(data):
|
581 |
-
pdf = FPDF()
|
582 |
-
pdf.add_page()
|
583 |
-
pdf.set_font("Arial", size=12)
|
584 |
-
|
585 |
-
for item in data:
|
586 |
-
pdf.multi_cell(0, 10, f"Context: {item['context']}")
|
587 |
-
pdf.multi_cell(0, 10, f"Question: {item['question']}")
|
588 |
-
pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
|
589 |
-
pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
|
590 |
-
pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
|
591 |
-
pdf.ln(10)
|
592 |
-
|
593 |
-
return pdf.output(dest='S').encode('latin-1')
|
594 |
-
|
595 |
-
def display_word_cloud(generated_questions):
|
596 |
-
word_frequency = {}
|
597 |
-
for question in generated_questions:
|
598 |
-
words = question.split()
|
599 |
-
for word in words:
|
600 |
-
word_frequency[word] = word_frequency.get(word, 0) + 1
|
601 |
-
|
602 |
-
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
|
603 |
-
plt.figure(figsize=(10, 5))
|
604 |
-
plt.imshow(wordcloud, interpolation='bilinear')
|
605 |
-
plt.axis('off')
|
606 |
-
st.pyplot()
|
607 |
-
|
608 |
-
|
609 |
-
def assess_question_quality(context, question, answer):
|
610 |
-
# Assess relevance using cosine similarity
|
611 |
-
context_doc = nlp(context)
|
612 |
-
question_doc = nlp(question)
|
613 |
-
relevance_score = context_doc.similarity(question_doc)
|
614 |
-
|
615 |
-
# Assess complexity using token length (as a simple metric)
|
616 |
-
complexity_score = min(len(question_doc) / 20, 1) # Normalize to 0-1
|
617 |
-
|
618 |
-
# Assess Spelling correctness
|
619 |
-
misspelled = spell.unknown(question.split())
|
620 |
-
spelling_correctness = 1 - (len(misspelled) / len(question.split())) # Normalize to 0-1
|
621 |
-
|
622 |
-
# Calculate overall score (you can adjust weights as needed)
|
623 |
-
overall_score = (
|
624 |
-
0.4 * relevance_score +
|
625 |
-
0.4 * complexity_score +
|
626 |
-
0.2 * spelling_correctness
|
627 |
-
)
|
628 |
-
|
629 |
-
return overall_score, relevance_score, complexity_score, spelling_correctness
|
630 |
|
631 |
def main():
|
632 |
-
# Streamlit interface
|
633 |
st.title(":blue[Question Generator System]")
|
634 |
session_id = get_session_id()
|
635 |
state = initialize_state(session_id)
|
@@ -637,18 +38,18 @@ def main():
|
|
637 |
st.session_state.feedback_data = []
|
638 |
|
639 |
with st.sidebar:
|
640 |
-
show_info = st.toggle('Show Info',
|
641 |
if show_info:
|
642 |
display_info()
|
643 |
st.subheader("Customization Options")
|
644 |
# Customization options
|
645 |
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
|
646 |
with st.expander("Choose the Additional Elements to show"):
|
647 |
-
show_context = st.checkbox("Context",
|
648 |
show_answer = st.checkbox("Answer",True)
|
649 |
-
show_options = st.checkbox("Options",
|
650 |
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
|
651 |
-
show_qa_scores = st.checkbox("QA Score",
|
652 |
show_blank_question = st.checkbox("Fill in the Blank Questions",True)
|
653 |
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
|
654 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
@@ -674,15 +75,15 @@ def main():
|
|
674 |
text = clean_text(text)
|
675 |
with st.expander("Show text"):
|
676 |
st.write(text)
|
|
|
677 |
generate_questions_button = st.button("Generate Questions",help="This is the generate questions button")
|
678 |
# st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
|
679 |
|
680 |
-
# if generate_questions_button:
|
681 |
if generate_questions_button and text:
|
682 |
start_time = time.time()
|
683 |
with st.spinner("Generating questions..."):
|
684 |
try:
|
685 |
-
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords))
|
686 |
if not state['generated_questions']:
|
687 |
st.warning("No questions were generated. The text might be too short or lack suitable content.")
|
688 |
else:
|
@@ -743,12 +144,16 @@ def main():
|
|
743 |
# Export buttons
|
744 |
# if st.session_state.generated_questions:
|
745 |
if state['generated_questions']:
|
746 |
-
with st.sidebar:
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
|
|
|
|
|
|
|
|
752 |
|
753 |
with st.expander("View Visualizations"):
|
754 |
questions = [tpl['question'] for tpl in state['generated_questions']]
|
@@ -759,7 +164,6 @@ def main():
|
|
759 |
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
|
760 |
st.line_chart(overall_scores)
|
761 |
|
762 |
-
|
763 |
# View Feedback Statistics
|
764 |
with st.expander("View Feedback Statistics"):
|
765 |
analyze_feedback()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
st.set_page_config(
|
4 |
page_icon='cyclone',
|
|
|
9 |
}
|
10 |
)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
from text_processing import clean_text, get_pdf_text
|
14 |
+
from question_generation import generate_questions_async
|
15 |
+
from visualization import display_word_cloud
|
16 |
+
from data_export import export_to_csv, export_to_pdf
|
17 |
+
from feedback import collect_feedback, analyze_feedback, export_feedback_data
|
18 |
+
from utils import get_session_id, initialize_state, get_state, set_state, display_info, QuestionGenerationError, entity_linking
|
19 |
+
import asyncio
|
20 |
+
import time
|
21 |
+
import pandas as pd
|
22 |
+
from data_export import send_email_with_attachment
|
23 |
|
24 |
+
st.set_option('deprecation.showPyplotGlobalUse',False)
|
|
|
25 |
|
26 |
with st.sidebar:
|
27 |
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
|
|
|
29 |
modelname = "DevBM/t5-large-squad"
|
30 |
elif select_model == "T5-small":
|
31 |
modelname = "AneriThakkar/flan-t5-small-finetuned"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def main():
|
|
|
34 |
st.title(":blue[Question Generator System]")
|
35 |
session_id = get_session_id()
|
36 |
state = initialize_state(session_id)
|
|
|
38 |
st.session_state.feedback_data = []
|
39 |
|
40 |
with st.sidebar:
|
41 |
+
show_info = st.toggle('Show Info',False)
|
42 |
if show_info:
|
43 |
display_info()
|
44 |
st.subheader("Customization Options")
|
45 |
# Customization options
|
46 |
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
|
47 |
with st.expander("Choose the Additional Elements to show"):
|
48 |
+
show_context = st.checkbox("Context",False)
|
49 |
show_answer = st.checkbox("Answer",True)
|
50 |
+
show_options = st.checkbox("Options",True)
|
51 |
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
|
52 |
+
show_qa_scores = st.checkbox("QA Score",True)
|
53 |
show_blank_question = st.checkbox("Fill in the Blank Questions",True)
|
54 |
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
|
55 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
|
|
75 |
text = clean_text(text)
|
76 |
with st.expander("Show text"):
|
77 |
st.write(text)
|
78 |
+
# st.text(text)
|
79 |
generate_questions_button = st.button("Generate Questions",help="This is the generate questions button")
|
80 |
# st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
|
81 |
|
|
|
82 |
if generate_questions_button and text:
|
83 |
start_time = time.time()
|
84 |
with st.spinner("Generating questions..."):
|
85 |
try:
|
86 |
+
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords,modelname))
|
87 |
if not state['generated_questions']:
|
88 |
st.warning("No questions were generated. The text might be too short or lack suitable content.")
|
89 |
else:
|
|
|
144 |
# Export buttons
|
145 |
# if st.session_state.generated_questions:
|
146 |
if state['generated_questions']:
|
147 |
+
with st.sidebar:
|
148 |
+
# Adding error handling while exporting the files
|
149 |
+
# ---------------------------------------------------------------------
|
150 |
+
try:
|
151 |
+
csv_data = export_to_csv(state['generated_questions'])
|
152 |
+
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
|
153 |
+
pdf_data = export_to_pdf(state['generated_questions'])
|
154 |
+
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
|
155 |
+
except Exception as e:
|
156 |
+
st.error(f"Error exporting CSV: {e}")
|
157 |
|
158 |
with st.expander("View Visualizations"):
|
159 |
questions = [tpl['question'] for tpl in state['generated_questions']]
|
|
|
164 |
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
|
165 |
st.line_chart(overall_scores)
|
166 |
|
|
|
167 |
# View Feedback Statistics
|
168 |
with st.expander("View Feedback Statistics"):
|
169 |
analyze_feedback()
|