|
import io |
|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
import requests |
|
import validators |
|
import torch |
|
import pathlib |
|
from PIL import Image |
|
from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection |
|
import os |
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
|
|
|
|
COLORS = [ |
|
[0.000, 0.447, 0.741], |
|
[0.850, 0.325, 0.098], |
|
[0.929, 0.694, 0.125], |
|
[0.494, 0.184, 0.556], |
|
[0.466, 0.674, 0.188], |
|
[0.301, 0.745, 0.933] |
|
] |
|
|
|
def make_prediction(img, feature_extractor, model): |
|
inputs = feature_extractor(img, return_tensors="pt") |
|
outputs = model(**inputs) |
|
img_size = torch.tensor([tuple(reversed(img.size))]) |
|
processed_outputs = feature_extractor.post_process(outputs, img_size) |
|
return processed_outputs[0] |
|
|
|
def fig2img(fig): |
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
pil_img = Image.open(buf) |
|
basewidth = 750 |
|
wpercent = (basewidth / float(pil_img.size[0])) |
|
hsize = int((float(pil_img.size[1]) * float(wpercent))) |
|
img = pil_img.resize((basewidth, hsize), Image.Resampling.LANCZOS) |
|
return img |
|
|
|
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None): |
|
keep = output_dict["scores"] > threshold |
|
boxes = output_dict["boxes"][keep].tolist() |
|
scores = output_dict["scores"][keep].tolist() |
|
labels = output_dict["labels"][keep].tolist() |
|
|
|
if id2label is not None: |
|
labels = [id2label[x] for x in labels] |
|
|
|
plt.figure(figsize=(50, 50)) |
|
plt.imshow(img) |
|
ax = plt.gca() |
|
colors = COLORS * 100 |
|
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): |
|
if label == 'license-plates': |
|
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=10)) |
|
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8)) |
|
plt.axis("off") |
|
return fig2img(plt.gcf()) |
|
|
|
def get_original_image(url_input): |
|
if validators.url(url_input): |
|
image = Image.open(requests.get(url_input, stream=True).raw) |
|
return image |
|
|
|
def detect_objects(model_name, url_input, image_input,threshold): |
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) |
|
|
|
if "yolos" in model_name: |
|
model = YolosForObjectDetection.from_pretrained(model_name) |
|
elif "detr" in model_name: |
|
model = DetrForObjectDetection.from_pretrained(model_name) |
|
|
|
if validators.url(url_input): |
|
image = get_original_image(url_input) |
|
elif image_input is not None: |
|
image = image_input |
|
|
|
|
|
processed_outputs = make_prediction(image, feature_extractor, model) |
|
|
|
|
|
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) |
|
|
|
return viz_img |
|
|
|
title = """<h1 id="title">License Plate Detection with YOLOS</h1>""" |
|
|
|
description = """ |
|
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN). |
|
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). |
|
This model was further fine-tuned on the [Car license plate dataset](https://www.kaggle.com/datasets/andrewmvd/car-plate-detection) from Kaggle. The dataset consists of 443 images of vehicles with annotations categorized as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU. |
|
Links to HuggingFace Models: |
|
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection) |
|
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small) |
|
""" |
|
|
|
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection", "nickmuchi/detr-resnet50-license-plate-detection"] |
|
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"] |
|
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))] |
|
|
|
|
|
css = ''' |
|
h1#title { |
|
text-align: center; |
|
} |
|
''' |
|
|
|
demo = gr.Blocks(css=css) |
|
|
|
with demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
options = gr.Dropdown(choices=models, label='Object Detection Model', value=models[0], show_label=True) |
|
slider_input = gr.Slider(minimum=0.2, maximum=1, value=0.5, step=0.1, label='Prediction Threshold') |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem('Image URL'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
url_input = gr.Textbox(lines=2, label='Enter valid image URL here..') |
|
original_image = gr.Image() |
|
url_input.change(fn=get_original_image, inputs=url_input, outputs=original_image) |
|
with gr.Column(): |
|
img_output_from_url = gr.Image() |
|
|
|
with gr.Row(): |
|
example_url = gr.Examples(examples=urls, inputs=[url_input]) |
|
|
|
url_but = gr.Button('Detect') |
|
|
|
with gr.TabItem('Image Upload'): |
|
with gr.Row(): |
|
img_input = gr.Image(type='pil') |
|
img_output_from_upload = gr.Image() |
|
|
|
with gr.Row(): |
|
example_images = gr.Examples(examples=images, inputs=[img_input]) |
|
|
|
img_but = gr.Button('Detect') |
|
|
|
url_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_url], queue=True) |
|
img_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_upload], queue=True) |
|
|
|
|
|
|
|
demo.launch(debug=True) |
|
|