Spaces:
Runtime error
Runtime error
File size: 4,111 Bytes
cb80c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import sys
import logging
import copy
import torch
from PIL import Image
import torchvision.transforms as transforms
from utils import factory
from utils.data_manager import DataManager
from torch.utils.data import DataLoader
from utils.toolkit import count_parameters
import os
import numpy as np
import json
import argparse
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
def _set_device(args):
device_type = args["device"]
gpus = []
for device in device_type:
if device == -1:
device = torch.device("cpu")
else:
device = torch.device("cuda:{}".format(device))
gpus.append(device)
args["device"] = gpus
def get_methods(object, spacing=20):
methodList = []
for method_name in dir(object):
try:
if callable(getattr(object, method_name)):
methodList.append(str(method_name))
except Exception:
methodList.append(str(method_name))
processFunc = (lambda s: ' '.join(s.split())) or (lambda s: s)
for method in methodList:
try:
print(str(method.ljust(spacing)) + ' ' +
processFunc(str(getattr(object, method).__doc__)[0:90]))
except Exception:
print(method.ljust(spacing) + ' ' + ' getattr() failed')
def load_model(args):
_set_device(args)
model = factory.get_model(args["model_name"], args)
model.load_checkpoint(args["checkpoint"])
return model
def evaluate(args):
logs_name = "logs/{}/{}_{}/{}/{}".format(args["model_name"],args["dataset"], args['data'], args['init_cls'], args['increment'])
if not os.path.exists(logs_name):
os.makedirs(logs_name)
logfilename = "logs/{}/{}_{}/{}/{}/{}_{}_{}".format(
args["model_name"],
args["dataset"],
args['data'],
args['init_cls'],
args["increment"],
args["prefix"],
args["seed"],
args["convnet_type"],
)
if not os.path.exists(logs_name):
os.makedirs(logs_name)
args['logfilename'] = logs_name
args['csv_name'] = "{}_{}_{}".format(
args["prefix"],
args["seed"],
args["convnet_type"],
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(filename)s] => %(message)s",
handlers=[
logging.FileHandler(filename=logfilename + ".log"),
logging.StreamHandler(sys.stdout),
],
)
_set_random()
print_args(args)
model = load_model(args)
data_manager = DataManager(
args["dataset"],
False,
args["seed"],
args["init_cls"],
args["increment"],
path = args["data"]
)
loader = DataLoader(data_manager.get_dataset(model.class_list, source = "test", mode = "test"), batch_size=args['batch_size'], shuffle=True, num_workers=8)
cnn_acc, nme_acc = model.eval_task(loader, group = 1, mode = "test")
print(cnn_acc, nme_acc)
def main():
args = setup_parser().parse_args()
param = load_json(args.config)
args = vars(args) # Converting argparse Namespace to a dict.
args.update(param) # Add parameters from json
evaluate(args)
def load_json(settings_path):
with open(settings_path) as data_file:
param = json.load(data_file)
return param
def _set_random():
torch.manual_seed(1)
torch.cuda.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_parser():
parser = argparse.ArgumentParser(description='Reproduce of multiple continual learning algorthms.')
parser.add_argument('--config', type=str, default='./exps/finetune.json',
help='Json file of settings.')
parser.add_argument('-d','--data', type=str, help='Path of the data folder')
parser.add_argument('-c','--checkpoint', type=str, help='Path of checkpoint file if resume training')
return parser
def print_args(args):
for key, value in args.items():
logging.info("{}: {}".format(key, value))
if __name__ == '__main__':
main()
|