Spaces:
Runtime error
Runtime error
import datasets | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import gradio as gr | |
from gradio.components import Label | |
# Load the dataset | |
dataset = datasets.load_dataset("SandipPalit/Movie_Dataset") | |
title = dataset['train']['Title'] | |
overview = dataset['train']['Overview'] | |
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") | |
overview = overview[:2000] | |
vectors = model.encode(overview) | |
vector_dimension = vectors.shape[1] | |
index = faiss.IndexFlatL2(vector_dimension) | |
faiss.normalize_L2(vectors) | |
index.add(vectors) | |
def get_model_generated_vector(text): | |
search_vector = model.encode(text) | |
vector = np.array([search_vector]) | |
faiss.normalize_L2(vector) | |
return vector | |
def find_top_k_matched(vector): | |
distances, ann = index.search(vector, k=5) | |
return [title[ann[0][0]], title[ann[0][1]], title[ann[0][2]], title[ann[0][3]], title[ann[0][4]]] | |
def movie_recommandation(text): | |
vector = get_model_generated_vector(text) | |
matches = find_top_k_matched(vector) | |
return matches[0], matches[1], matches[2], matches[3], matches[4] | |
demo = gr.Interface( | |
fn=movie_recommandation, | |
inputs=gr.Textbox(placeholder="Enter the Movie Name"), | |
outputs=[Label() for i in range(5)], | |
examples=[["Scarlet Macaw on Perch"], ["horror"], ["action"]]) | |
demo.launch() |