Devap001 commited on
Commit
376af75
Β·
1 Parent(s): 36c8bbc

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ from sentence_transformers import SentenceTransformer
3
+ import faiss
4
+ import numpy as np
5
+ import gradio as gr
6
+ from gradio.components import Label
7
+
8
+
9
+
10
+ # Load the dataset
11
+ dataset = datasets.load_dataset("SandipPalit/Movie_Dataset")
12
+ title = dataset['train']['Title']
13
+ overview = dataset['train']['Overview']
14
+
15
+ model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
16
+
17
+ vectors = model.encode(overview)
18
+
19
+ vector_dimension = vectors.shape[1]
20
+ index = faiss.IndexFlatL2(vector_dimension)
21
+ faiss.normalize_L2(vectors)
22
+ index.add(vectors)
23
+
24
+ def get_model_generated_vector(text):
25
+ search_vector = model.encode(text)
26
+ vector = np.array([search_vector])
27
+ faiss.normalize_L2(vector)
28
+ return vector
29
+
30
+ def find_top_k_matched(vector):
31
+ distances, ann = index.search(vector, k=5)
32
+ return [title[ann[0][0]], title[ann[0][1]], title[ann[0][2]], title[ann[0][3]], title[ann[0][4]]]
33
+
34
+
35
+ def movie_recommandation(text):
36
+ vector = get_model_generated_vector(text)
37
+ matches = find_top_k_matched(vector)
38
+ return matches[0], matches[1], matches[2], matches[3], matches[4]
39
+
40
+ demo = gr.Interface(
41
+ fn=movie_recommandation,
42
+ inputs=gr.Textbox(placeholder="Enter the Movie Name"),
43
+ outputs=[Label() for i in range(5)],
44
+ examples=[["Scarlet Macaw on Perch"], ["horror"], ["action"]])
45
+
46
+ demo.launch()