import datasets from sentence_transformers import SentenceTransformer import faiss import numpy as np import gradio as gr from gradio.components import Label # Load the dataset dataset = datasets.load_dataset("SandipPalit/Movie_Dataset") title = dataset['train']['Title'] overview = dataset['train']['Overview'] model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") # overview = overview[:2000] vectors = model.encode(overview) vector_dimension = vectors.shape[1] index = faiss.IndexFlatL2(vector_dimension) faiss.normalize_L2(vectors) index.add(vectors) def get_model_generated_vector(text): search_vector = model.encode(text) vector = np.array([search_vector]) faiss.normalize_L2(vector) return vector def find_top_k_matched(vector): distances, ann = index.search(vector, k=5) return [title[ann[0][0]], title[ann[0][1]], title[ann[0][2]], title[ann[0][3]], title[ann[0][4]]] def movie_recommandation(text): vector = get_model_generated_vector(text) matches = find_top_k_matched(vector) return matches[0], matches[1], matches[2], matches[3], matches[4] demo = gr.Interface( fn=movie_recommandation, inputs=gr.Textbox(placeholder="Enter the Movie Name"), outputs=[Label() for i in range(5)], examples=[["America of the seventies. Two New York City"], ["The Adventures of Prince Achmed"], ["Man on the Roof"], ["The Marriage Circle"], ["The Devil's Playground"]]) demo.launch()