File size: 1,697 Bytes
a56d71f
 
 
882fc55
 
a56d71f
 
 
 
 
 
 
5d1b970
 
a56d71f
 
 
 
 
 
 
 
 
 
882fc55
a56d71f
882fc55
 
 
 
 
a56d71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
import torch
from ultralyticsplus import YOLO, render_result
from PIL import Image
import os

def yolov8_func(image, 
                image_size, 
                conf_thresold=0.4,
                iou_thresold=0.50):

    # Load the YOLOv8 model
    model_path = "best.pt"
    model = YOLO(model_path)  # Use your custom model path here

    # Make predictions
    result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size)

    # Access and print object detection results
    box = result[0].boxes
    print("Object type: ", box.cls)
    print("Confidence: ", box.conf)
    print("Coordinates: ", box.xyxy)

    # Render the result
    render = render_result(model=model, image=image, result=result[0])
    
    # Save the rendered image locally
    save_path = "predicted_image.jpg"  # Specify the output path
    render.save(save_path)  # Save using PIL's save method
    return save_path

# Define inputs for the Gradio app
inputs = [
    gr.Image(type="filepath", label="Input Image"),
    gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size"),
    gr.Slider(minimum=0, maximum=1, step=0.05, value=0.25, label="Confidence Threshold"),
    gr.Slider(minimum=0, maximum=1, step=0.05, value=0.45, label="IOU Threshold")
]

# Define the output for the Gradio app
outputs = gr.Image(type="filepath", label="Output Image")

# Set the title of the Gradio app
title = "YOLOv8: An Object Detection for Acne"

# Create the Gradio interface
yolo_app = gr.Interface(fn=yolov8_func,
                    inputs=inputs,
                    outputs=outputs,
                    title=title)

# Launch the app
yolo_app.launch(debug=True)