Spaces:
Running
Running
import gradio as gr | |
import torch | |
from ultralyticsplus import YOLO, render_result | |
from PIL import Image | |
import os | |
def yolov8_func(image, | |
image_size, | |
conf_thresold=0.4, | |
iou_thresold=0.50): | |
# Load the YOLOv8 model | |
model_path = "best.pt" | |
model = YOLO(model_path) # Use your custom model path here | |
# Make predictions | |
result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size) | |
# Access object detection results | |
boxes = result[0].boxes # Bounding boxes | |
num_boxes = len(boxes) # Count the number of bounding boxes (detections) | |
# Print object detection details (optional) | |
print("Object type: ", boxes.cls) | |
print("Confidence: ", boxes.conf) | |
print("Coordinates: ", boxes.xyxy) | |
print(f"Number of bounding boxes: {num_boxes}") | |
# Categorize based on number of boxes (detections) and provide recommendations | |
if num_boxes > 10: | |
severity = "Worse" | |
recommendation = "It is recommended to see a dermatologist and start stronger acne treatment." | |
elif 5 <= num_boxes <= 10: | |
severity = "Medium" | |
recommendation = "You should follow a consistent skincare routine with proper cleansing and moisturizing." | |
else: | |
severity = "Good" | |
recommendation = "Your skin looks good! Keep up with your current skincare routine." | |
print(f"Acne condition: {severity}") | |
print(f"Recommendation: {recommendation}") | |
# Render the result (with bounding boxes/labels) | |
render = render_result(model=model, image=image, result=result[0]) | |
# Save the rendered image (with predictions) | |
predicted_image_save_path = "predicted_image.jpg" | |
render.save(predicted_image_save_path) | |
# Return the saved image, severity, and recommendation for Gradio output | |
return predicted_image_save_path, f"Acne condition: {severity}", recommendation | |
# Define inputs for the Gradio app | |
inputs = [ | |
gr.Image(type="filepath", label="Input Image"), | |
gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size"), | |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.15, label="Confidence Threshold"), | |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.15, label="IOU Threshold") | |
] | |
# Define the output for the Gradio app (image + text for severity and recommendation) | |
outputs = [ | |
gr.Image(type="filepath", label="Output Image"), | |
gr.Textbox(label="Acne Condition"), | |
gr.Textbox(label="Recommendation") | |
] | |
# Set the title of the Gradio app | |
title = "YOLOv8: An Object Detection for Acne" | |
# Create the Gradio interface | |
yolo_app = gr.Interface(fn=yolov8_func, | |
inputs=inputs, | |
outputs=outputs, | |
title=title) | |
# Launch the app | |
yolo_app.launch(debug=True) |