Acne-Detection / app.py
Devon12's picture
Update app.py
505529e verified
raw
history blame
2.56 kB
import gradio as gr
import torch
from ultralyticsplus import YOLO, render_result
from PIL import Image
import os
def yolov8_func(image,
image_size,
conf_thresold=0.4,
iou_thresold=0.50):
# Load the YOLOv8 model
model_path = "best.pt"
model = YOLO(model_path)
# Make predictions
result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size)
# Access object detection results
boxes = result[0].boxes
num_boxes = len(boxes)
# Categorize based on number of boxes (detections) and provide recommendations
if num_boxes > 10:
severity = "Worse"
recommendation = "It is recommended to see a dermatologist and start stronger acne treatment."
elif 5 <= num_boxes <= 10:
severity = "Medium"
recommendation = "You should follow a consistent skincare routine with proper cleansing and moisturizing."
else:
severity = "Good"
recommendation = "Your skin looks good! Keep up with your current skincare routine."
# Render the result (with bounding boxes/labels)
render = render_result(model=model, image=image, result=result[0])
predicted_image_save_path = "predicted_image.jpg"
render.save(predicted_image_save_path)
return predicted_image_save_path, f"Acne condition: {severity}", recommendation
# Create the Gradio
with gr.Blocks() as yolo_app:
gr.Markdown("# YOLOv8: An Object Detection for Acne")
with gr.Row():
with gr.Column(scale=1): # Left side with input
input_image = gr.Image(type="filepath", label="Input Image")
image_size = gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size")
conf_thresh = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.15, label="Confidence Threshold")
iou_thresh = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.2, label="IOU Threshold")
submit_btn = gr.Button("Submit")
with gr.Column(scale=1): # Right side with output
output_image = gr.Image(type="filepath", label="Output Image")
acne_condition = gr.Textbox(label="Acne Condition")
recommendation = gr.Textbox(label="Recommendation")
# Link the submit button to the function
submit_btn.click(fn=yolov8_func,
inputs=[input_image, image_size, conf_thresh, iou_thresh],
outputs=[output_image, acne_condition, recommendation])
# Launch the app
yolo_app.launch(debug=True)