Spaces:
Running
Running
import gradio as gr | |
import torch | |
from ultralyticsplus import YOLO, render_result | |
def yolov8_func(image, | |
image_size, | |
conf_thresold=0.4, | |
iou_thresold=0.50): | |
# Load the YOLOv8 model | |
model = YOLO('/content/runs/detect/train/weights/best.pt') # Use your custom model path here | |
# Make predictions | |
result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size) | |
# Access and print object detection results | |
box = result[0].boxes | |
print("Object type: ", box.cls) | |
print("Confidence: ", box.conf) | |
print("Coordinates: ", box.xyxy) | |
# Render and return the result | |
render = render_result(model=model, image=image, result=result[0]) | |
return render | |
# Define inputs for the Gradio app | |
inputs = [ | |
gr.Image(type="filepath", label="Input Image"), | |
gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size"), | |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.25, label="Confidence Threshold"), | |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.45, label="IOU Threshold") | |
] | |
# Define the output for the Gradio app | |
outputs = gr.Image(type="filepath", label="Output Image") | |
# Set the title of the Gradio app | |
title = "YOLOv8: An Object Detection for Acne" | |
# Create the Gradio interface | |
yolo_app = gr.Interface(fn=yolov8_func, | |
inputs=inputs, | |
outputs=outputs, | |
title=title) | |
# Launch the app | |
yolo_app.launch(debug=True) | |