Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,13 +12,13 @@ def yolov8_func(image,
|
|
12 |
# Load the YOLOv8 model
|
13 |
model_path = "best.pt"
|
14 |
model = YOLO(model_path)
|
15 |
-
|
16 |
# Make predictions
|
17 |
result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size)
|
18 |
|
19 |
# Access object detection results
|
20 |
boxes = result[0].boxes
|
21 |
-
num_boxes = len(boxes)
|
22 |
|
23 |
# Print object detection details (optional)
|
24 |
print("Object type: ", boxes.cls)
|
@@ -43,26 +43,27 @@ def yolov8_func(image,
|
|
43 |
# Render the result (with bounding boxes/labels)
|
44 |
render = render_result(model=model, image=image, result=result[0])
|
45 |
|
46 |
-
# Save the rendered image (with predictions)
|
47 |
predicted_image_save_path = "predicted_image.jpg"
|
48 |
render.save(predicted_image_save_path)
|
49 |
-
|
50 |
-
# Return the saved image, severity, and recommendation for Gradio output
|
51 |
return predicted_image_save_path, f"Acne condition: {severity}", recommendation
|
52 |
|
53 |
# Define inputs for the Gradio app
|
54 |
inputs = [
|
55 |
gr.Image(type="filepath", label="Input Image"),
|
56 |
gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size"),
|
57 |
-
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.
|
58 |
-
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.
|
59 |
]
|
60 |
|
61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
62 |
outputs = [
|
63 |
-
|
64 |
-
gr.
|
65 |
-
gr.Textbox(label="Recommendation")
|
66 |
]
|
67 |
|
68 |
# Set the title of the Gradio app
|
@@ -75,4 +76,4 @@ yolo_app = gr.Interface(fn=yolov8_func,
|
|
75 |
title=title)
|
76 |
|
77 |
# Launch the app
|
78 |
-
yolo_app.launch(debug=True)
|
|
|
12 |
# Load the YOLOv8 model
|
13 |
model_path = "best.pt"
|
14 |
model = YOLO(model_path)
|
15 |
+
|
16 |
# Make predictions
|
17 |
result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size)
|
18 |
|
19 |
# Access object detection results
|
20 |
boxes = result[0].boxes
|
21 |
+
num_boxes = len(boxes)
|
22 |
|
23 |
# Print object detection details (optional)
|
24 |
print("Object type: ", boxes.cls)
|
|
|
43 |
# Render the result (with bounding boxes/labels)
|
44 |
render = render_result(model=model, image=image, result=result[0])
|
45 |
|
|
|
46 |
predicted_image_save_path = "predicted_image.jpg"
|
47 |
render.save(predicted_image_save_path)
|
|
|
|
|
48 |
return predicted_image_save_path, f"Acne condition: {severity}", recommendation
|
49 |
|
50 |
# Define inputs for the Gradio app
|
51 |
inputs = [
|
52 |
gr.Image(type="filepath", label="Input Image"),
|
53 |
gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size"),
|
54 |
+
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.15, label="Confidence Threshold"),
|
55 |
+
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.2, label="IOU Threshold")
|
56 |
]
|
57 |
|
58 |
+
# Use a Row layout to align the textboxes for condition and recommendation
|
59 |
+
output_image = gr.Image(type="filepath", label="Output Image")
|
60 |
+
acne_condition = gr.Textbox(label="Acne Condition")
|
61 |
+
recommendation = gr.Textbox(label="Recommendation")
|
62 |
+
|
63 |
+
# Define the layout using Rows and Columns
|
64 |
outputs = [
|
65 |
+
output_image,
|
66 |
+
gr.Row([acne_condition, recommendation])
|
|
|
67 |
]
|
68 |
|
69 |
# Set the title of the Gradio app
|
|
|
76 |
title=title)
|
77 |
|
78 |
# Launch the app
|
79 |
+
yolo_app.launch(debug=True)
|