import gradio as gr import torch from ultralyticsplus import YOLO, render_result from PIL import Image import os def yolov8_func(image, image_size, conf_thresold=0.4, iou_thresold=0.50): # Load the YOLOv8 model model_path = "best.pt" model = YOLO(model_path) # Make predictions result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size) # Access object detection results boxes = result[0].boxes num_boxes = len(boxes) # Print object detection details (optional) print("Object type: ", boxes.cls) print("Confidence: ", boxes.conf) print("Coordinates: ", boxes.xyxy) print(f"Number of bounding boxes: {num_boxes}") # Categorize based on number of boxes (detections) and provide recommendations if num_boxes > 10: severity = "Worse" recommendation = "It is recommended to see a dermatologist and start stronger acne treatment." elif 5 <= num_boxes <= 10: severity = "Medium" recommendation = "You should follow a consistent skincare routine with proper cleansing and moisturizing." else: severity = "Good" recommendation = "Your skin looks good! Keep up with your current skincare routine." print(f"Acne condition: {severity}") print(f"Recommendation: {recommendation}") # Render the result (with bounding boxes/labels) render = render_result(model=model, image=image, result=result[0]) predicted_image_save_path = "predicted_image.jpg" render.save(predicted_image_save_path) return predicted_image_save_path, f"Acne condition: {severity}", recommendation # Define inputs for the Gradio app inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size"), gr.Slider(minimum=0, maximum=1, step=0.05, value=0.15, label="Confidence Threshold"), gr.Slider(minimum=0, maximum=1, step=0.05, value=0.2, label="IOU Threshold") ] # Use a Row layout to align the textboxes for condition and recommendation output_image = gr.Image(type="filepath", label="Output Image") acne_condition = gr.Textbox(label="Acne Condition") recommendation = gr.Textbox(label="Recommendation") # Define the layout using Rows and Columns outputs = [ output_image, gr.Row([acne_condition, recommendation]) ] # Set the title of the Gradio app title = "YOLOv8: An Object Detection for Acne" # Create the Gradio interface yolo_app = gr.Interface(fn=yolov8_func, inputs=inputs, outputs=outputs, title=title) # Launch the app yolo_app.launch(debug=True)