import gradio as gr import torch from ultralyticsplus import YOLO, render_result from PIL import Image import os def yolov8_func(image, image_size, conf_thresold=0.4, iou_thresold=0.50): # Load the YOLOv8 model model_path = "best.pt" model = YOLO(model_path) # Make predictions result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size) # Access object detection results boxes = result[0].boxes num_boxes = len(boxes) # Categorize based on number of boxes (detections) and provide recommendations if num_boxes > 10: severity = "Worse" recommendation = "It is recommended to see a dermatologist and start stronger acne treatment." elif 5 <= num_boxes <= 10: severity = "Medium" recommendation = "You should follow a consistent skincare routine with proper cleansing and moisturizing." else: severity = "Good" recommendation = "Your skin looks good! Keep up with your current skincare routine." # Render the result (with bounding boxes/labels) render = render_result(model=model, image=image, result=result[0]) predicted_image_save_path = "predicted_image.jpg" render.save(predicted_image_save_path) return predicted_image_save_path, f"Acne condition: {severity}", recommendation # Create the Gradio with gr.Blocks() as yolo_app: gr.Markdown("# YOLOv8: An Object Detection for Acne") with gr.Row(): with gr.Column(scale=1): # Left side with input input_image = gr.Image(type="filepath", label="Input Image") image_size = gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size") conf_thresh = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.15, label="Confidence Threshold") iou_thresh = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.2, label="IOU Threshold") submit_btn = gr.Button("Submit") with gr.Column(scale=1): # Right side with output output_image = gr.Image(type="filepath", label="Output Image") acne_condition = gr.Textbox(label="Acne Condition") recommendation = gr.Textbox(label="Recommendation") # Link the submit button to the function submit_btn.click(fn=yolov8_func, inputs=[input_image, image_size, conf_thresh, iou_thresh], outputs=[output_image, acne_condition, recommendation]) # Launch the app yolo_app.launch(debug=True)