import gradio as gr import torch from ultralyticsplus import YOLO, render_result def yolov8_func(image, image_size, conf_thresold=0.4, iou_thresold=0.50): # Load the YOLOv8 model model = YOLO('/content/runs/detect/train/weights/best.pt') # Use your custom model path here # Make predictions result = model.predict(image, conf=conf_thresold, iou=iou_thresold, imgsz=image_size) # Access and print object detection results box = result[0].boxes print("Object type: ", box.cls) print("Confidence: ", box.conf) print("Coordinates: ", box.xyxy) # Render and return the result render = render_result(model=model, image=image, result=result[0]) return render # Define inputs for the Gradio app inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Slider(minimum=320, maximum=1280, step=32, value=640, label="Image Size"), gr.Slider(minimum=0, maximum=1, step=0.05, value=0.25, label="Confidence Threshold"), gr.Slider(minimum=0, maximum=1, step=0.05, value=0.45, label="IOU Threshold") ] # Define the output for the Gradio app outputs = gr.Image(type="filepath", label="Output Image") # Set the title of the Gradio app title = "YOLOv8: An Object Detection for Acne" # Create the Gradio interface yolo_app = gr.Interface(fn=yolov8_func, inputs=inputs, outputs=outputs, title=title) # Launch the app yolo_app.launch(debug=True)