Spaces:
Running
Running
DexterSptizu
commited on
Commit
•
77ea126
1
Parent(s):
9105364
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from langchain_core.runnables import RunnablePassthrough
|
8 |
from PyPDF2 import PdfReader
|
9 |
import os
|
10 |
|
11 |
# Function to process the uploaded PDF and convert it to documents
|
12 |
def pdf_to_documents(pdf_file):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Initialize vector store
|
19 |
def initialize_vectorstore(documents, api_key):
|
@@ -22,50 +26,64 @@ def initialize_vectorstore(documents, api_key):
|
|
22 |
vectorstore = Chroma.from_documents(documents, embedding=embeddings)
|
23 |
return vectorstore
|
24 |
|
25 |
-
# RAG retrieval and LLM chain
|
26 |
def rag_from_pdf(question, pdf_file, api_key):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
34 |
-
|
35 |
-
# Create a prompt template for combining context and question
|
36 |
-
prompt_template = """
|
37 |
-
Answer this question using the provided context only.
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Gradio interface
|
55 |
with gr.Blocks() as app:
|
56 |
-
gr.Markdown("##
|
57 |
-
|
58 |
# Input for OpenAI API Key
|
59 |
-
api_key_input = gr.Textbox(label="Enter your OpenAI API Key", type="password")
|
60 |
|
61 |
# File upload for the PDF
|
62 |
-
pdf_file_input = gr.File(label="Upload your PDF document")
|
63 |
|
64 |
# Question input
|
65 |
-
question_input = gr.Textbox(label="Ask a question related to the PDF")
|
66 |
|
67 |
# Output for the RAG response
|
68 |
-
rag_output = gr.Textbox(label="Generated
|
69 |
|
70 |
# Button to run RAG chain
|
71 |
rag_button = gr.Button("Ask Question")
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain.vectorstores import Chroma
|
3 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
4 |
+
from langchain.schema import Document
|
5 |
+
from langchain.chat_models import ChatOpenAI
|
6 |
+
from langchain.prompts.chat import ChatPromptTemplate
|
|
|
7 |
from PyPDF2 import PdfReader
|
8 |
import os
|
9 |
|
10 |
# Function to process the uploaded PDF and convert it to documents
|
11 |
def pdf_to_documents(pdf_file):
|
12 |
+
try:
|
13 |
+
reader = PdfReader(pdf_file.name)
|
14 |
+
pages = [page.extract_text().strip() for page in reader.pages if page.extract_text()]
|
15 |
+
documents = [Document(page_content=page, metadata={"page_number": idx + 1}) for idx, page in enumerate(pages)]
|
16 |
+
if not documents:
|
17 |
+
raise ValueError("The uploaded PDF is empty or could not be processed.")
|
18 |
+
return documents
|
19 |
+
except Exception as e:
|
20 |
+
raise ValueError(f"Failed to process the PDF: {str(e)}")
|
21 |
|
22 |
# Initialize vector store
|
23 |
def initialize_vectorstore(documents, api_key):
|
|
|
26 |
vectorstore = Chroma.from_documents(documents, embedding=embeddings)
|
27 |
return vectorstore
|
28 |
|
29 |
+
# RAG retrieval and LLM chain for FAQ Bot
|
30 |
def rag_from_pdf(question, pdf_file, api_key):
|
31 |
+
if not question.strip():
|
32 |
+
return "Please enter a question."
|
33 |
+
if not pdf_file:
|
34 |
+
return "Please upload a valid PDF file."
|
35 |
+
if not api_key.strip():
|
36 |
+
return "Please enter your OpenAI API key."
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
try:
|
39 |
+
# Process the PDF into documents
|
40 |
+
documents = pdf_to_documents(pdf_file)
|
41 |
+
|
42 |
+
# Initialize vectorstore
|
43 |
+
vectorstore = initialize_vectorstore(documents, api_key)
|
44 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
45 |
+
|
46 |
+
# Initialize the LLM
|
47 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
48 |
+
|
49 |
+
# Create a prompt template for combining context and question
|
50 |
+
prompt_template = """
|
51 |
+
You are a helpful assistant answering questions based on the provided PDF document.
|
52 |
+
Only use the given context to answer the question.
|
53 |
+
Question: {question}
|
54 |
+
Context: {context}
|
55 |
+
"""
|
56 |
+
prompt = ChatPromptTemplate.from_template(prompt_template)
|
57 |
+
|
58 |
+
# Retrieve relevant documents
|
59 |
+
retrieved_docs = retriever.get_relevant_documents(question)
|
60 |
+
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
61 |
+
|
62 |
+
# Generate response using the LLM
|
63 |
+
if not context.strip():
|
64 |
+
return "No relevant information found in the document to answer the question."
|
65 |
+
|
66 |
+
formatted_prompt = prompt.format(question=question, context=context)
|
67 |
+
response = llm(completion=formatted_prompt)
|
68 |
+
return response.strip()
|
69 |
+
except Exception as e:
|
70 |
+
return f"An error occurred: {str(e)}"
|
71 |
|
72 |
# Gradio interface
|
73 |
with gr.Blocks() as app:
|
74 |
+
gr.Markdown("## Smart FAQ Bot - Ask Questions from Your PDF File")
|
75 |
+
|
76 |
# Input for OpenAI API Key
|
77 |
+
api_key_input = gr.Textbox(label="Enter your OpenAI API Key", type="password", placeholder="sk-...")
|
78 |
|
79 |
# File upload for the PDF
|
80 |
+
pdf_file_input = gr.File(label="Upload your PDF document", file_types=[".pdf"])
|
81 |
|
82 |
# Question input
|
83 |
+
question_input = gr.Textbox(label="Ask a question related to the PDF", placeholder="Type your question here...")
|
84 |
|
85 |
# Output for the RAG response
|
86 |
+
rag_output = gr.Textbox(label="Generated Answer", lines=10, placeholder="Your answer will appear here...")
|
87 |
|
88 |
# Button to run RAG chain
|
89 |
rag_button = gr.Button("Ask Question")
|