import torch from transformers import AutoTokenizer, AutoModelForTokenClassification import gradio as gr # Load the tokenizer and model model_name = "iiiorg/piiranha-v1-detect-personal-information" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) # Set device to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def apply_redaction(masked_text, start, end, pii_type, aggregate_redaction): for j in range(start, end): masked_text[j] = '' if aggregate_redaction: masked_text[start] = '[redacted]' else: masked_text[start] = f'[{pii_type}]' def mask_pii(text, aggregate_redaction=True): # Tokenize input text inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) inputs = {k: v.to(device) for k, v in inputs.items()} # Get the model predictions with torch.no_grad(): outputs = model(**inputs) # Get the predicted labels predictions = torch.argmax(outputs.logits, dim=-1) # Convert token predictions to word predictions encoded_inputs = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True) offset_mapping = encoded_inputs['offset_mapping'] masked_text = list(text) is_redacting = False redaction_start = 0 current_pii_type = '' for i, (start, end) in enumerate(offset_mapping): if start == end: # Special token continue label = predictions[0][i].item() if label != model.config.label2id['O']: # Non-O label pii_type = model.config.id2label[label] if not is_redacting: is_redacting = True redaction_start = start current_pii_type = pii_type elif not aggregate_redaction and pii_type != current_pii_type: # End current redaction and start a new one apply_redaction(masked_text, redaction_start, start, current_pii_type, aggregate_redaction) redaction_start = start current_pii_type = pii_type else: if is_redacting: apply_redaction(masked_text, redaction_start, end, current_pii_type, aggregate_redaction) is_redacting = False # Handle case where PII is at the end of the text if is_redacting: apply_redaction(masked_text, redaction_start, len(masked_text), current_pii_type, aggregate_redaction) return ''.join(masked_text) # Define the function for Gradio interface def redact_text(text, aggregate_redaction): return mask_pii(text, aggregate_redaction) # Create Gradio Interface demo = gr.Interface( fn=redact_text, inputs=[ gr.Textbox(lines=5, label="Enter Text with Potential PII"), gr.Checkbox(label="Aggregate Redaction", value=True) ], outputs="text", title="PII Detection and Redaction", description="This application detects personal identifiable information (PII) and redacts it from the provided text. You can choose to either aggregate all PII redaction into a single '[redacted]' label or keep each PII type labeled individually.", examples=[ ["John Doe's phone number is 123-456-7890, and his email is john.doe@example.com."], ["Jane was born on 12th August, 1990 and her SSN is 987-65-4321."] ] ) if __name__ == "__main__": demo.launch()