Spaces:
Running
Running
File size: 6,502 Bytes
74129e6 919a9c1 b1333f4 a032ead 5b1ccca d119d56 5b1ccca 48411ba 74129e6 a032ead 74129e6 d63d2a9 a032ead 74129e6 d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead d63d2a9 a032ead 919a9c1 542d6f3 a032ead 5b1ccca 542d6f3 5b1ccca e1a5f90 a032ead 03fde36 36040e4 5b1ccca 867e9e0 5b1ccca dfaa287 a032ead dfaa287 a032ead 74129e6 a63ae46 74129e6 a032ead 74129e6 5fd968a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from aksharamukha import transliterate
import torch
from dotenv import load_dotenv
import os
import requests
access_token = os.getenv('token')
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
chat_language = 'sin_Sinh'
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang=chat_language, max_length = 400, device=device)
# Initialize translation pipelines
pipe = pipeline("translation", model="thilina/mt5-sinhalese-english")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
eng_trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", src_lang="en_XX")
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english")
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english")
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v4")
# Translation functions
def translate_Singlish_to_sinhala(text):
translated_text = singlish_pipe(f"translate Singlish to Sinhala: {text}", clean_up_tokenization_spaces=False)[0]['generated_text']
return translated_text
def translate_english_to_sinhala(text):
# Split the text into sentences or paragraphs
parts = text.split("\n") # Split by new lines for paragraphs, adjust as needed
translated_parts = []
for part in parts:
translated_part = translator(part, clean_up_tokenization_spaces=False)[0]['translation_text']
translated_parts.append(translated_part)
# Join the translated parts back together
translated_text = "\n".join(translated_parts)
return translated_text.replace("ප් රභූවරුන්", "")
def translate_sinhala_to_english(text):
# Split the text into sentences or paragraphs
parts = text.split("\n") # Split by new lines for paragraphs, adjust as needed
translated_parts = []
for part in parts:
# Tokenize each part
inputs = si_trans_tokenizer(part.strip(), return_tensors="pt", padding=True, truncation=True, max_length=512)
# Generate translation
outputs = sin_trans_model.generate(**inputs)
# Decode translated text while preserving formatting
translated_part = si_trans_tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
translated_parts.append(translated_part)
# Join the translated parts back together
translated_text = "\n".join(translated_parts)
return translated_text
def transliterate_from_sinhala(text):
# Define the source and target scripts
source_script = 'Sinhala'
target_script = 'Velthuis'
# Perform transliteration
latin_text = transliterate.process(source_script, target_script, text)
# Convert to a list to allow modification
latin_text_list = list(latin_text)
# Replace periods with the following character
i = 0
for i in range(len(latin_text_list) - 1):
if latin_text_list[i] == '.':
latin_text_list[i] = ''
if latin_text_list[i] == '*':
latin_text_list[i] = ''
if latin_text_list[i] == '\"':
latin_text_list[i] = ''
# Convert back to a string
latin_text = ''.join(latin_text_list)
return latin_text.lower()
def transliterate_to_sinhala(text):
# Define the source and target scripts
source_script = 'Velthuis'
target_script = 'Sinhala'
# Perform transliteration
latin_text = transliterate.process(source_script, target_script, text)
return latin_text
# Placeholder for conversation model loading and pipeline setup
# pipe1 = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
# interface = gr.Interface.load("huggingface/microsoft/Phi-3-mini-4k-instruct")
API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
headers = {"Authorization": f"Bearer {access_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# def conversation_predict(text):
# return interface([text])[0]
def ai_predicted(user_input):
if user_input.lower() == 'exit':
return "Goodbye!"
user_input = translate_Singlish_to_sinhala(user_input)
user_input = transliterate_to_sinhala(user_input)
user_input = translate_sinhala_to_english(user_input)
response_json = query({
"inputs": f"{user_input}",
})
if 'generated_text' in response_json[0]:
ai_response = response_json[0]['generated_text']
elif 'text' in response_json[0]:
ai_response = response_json[0]['text']
else:
ai_response = response_json[0]
# ai_response = conversation_predict(user_input)
# ai_response_lines = ai_response.split("</s>")
response = translate_english_to_sinhala(ai_response)
response = transliterate_from_sinhala(response)
return response
# Gradio Interface
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ai_predicted(message)
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(share=True) |