Create pipeline.py
Browse files- pipeline.py +166 -0
pipeline.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from itertools import chain
|
3 |
+
from typing import Any, List
|
4 |
+
|
5 |
+
from haystack.components.converters import PyPDFToDocument, MarkdownToDocument, TextFileToDocument, OutputAdapter
|
6 |
+
from haystack.components.routers import FileTypeRouter
|
7 |
+
from haystack.components.joiners import DocumentJoiner
|
8 |
+
from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter
|
9 |
+
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
10 |
+
from haystack.components.writers import DocumentWriter
|
11 |
+
from haystack.components.builders import ChatPromptBuilder, PromptBuilder
|
12 |
+
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
|
13 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
14 |
+
from haystack.core.component.types import Variadic
|
15 |
+
|
16 |
+
from haystack_experimental.chat_message_stores.in_memory import InMemoryChatMessageStore
|
17 |
+
from haystack_experimental.components.retrievers import ChatMessageRetriever
|
18 |
+
from haystack_experimental.components.writers import ChatMessageWriter
|
19 |
+
from haystack_integrations.components.generators.cohere import CohereChatGenerator, CohereGenerator
|
20 |
+
from haystack_experimental.components.retrievers import ChatMessageRetriever
|
21 |
+
from haystack_experimental.components.writers import ChatMessageWriter
|
22 |
+
|
23 |
+
from haystack.dataclasses import ChatMessage
|
24 |
+
from haystack import Pipeline
|
25 |
+
from haystack import component
|
26 |
+
|
27 |
+
import os
|
28 |
+
from dotenv import load_dotenv
|
29 |
+
|
30 |
+
# Load .env file
|
31 |
+
load_dotenv()
|
32 |
+
|
33 |
+
# Access the API key
|
34 |
+
os.environ["COHERE_API_KEY"] = os.getenv('COHERE_API_KEY')
|
35 |
+
|
36 |
+
|
37 |
+
document_store = InMemoryDocumentStore()
|
38 |
+
file_type_router = FileTypeRouter(mime_types=['text/plain','application/pdf','text/markdown'])
|
39 |
+
pdf_converter = PyPDFToDocument()
|
40 |
+
text_file_converter = TextFileToDocument()
|
41 |
+
markdown_converter = MarkdownToDocument()
|
42 |
+
document_joiner = DocumentJoiner()
|
43 |
+
document_cleaner = DocumentCleaner()
|
44 |
+
document_splitter = DocumentSplitter(split_by='word', split_overlap=50)
|
45 |
+
document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L12-v2")
|
46 |
+
document_writer = DocumentWriter(document_store)
|
47 |
+
|
48 |
+
|
49 |
+
preprocessing_pipeline = Pipeline()
|
50 |
+
|
51 |
+
|
52 |
+
# Adding Componenets
|
53 |
+
preprocessing_pipeline.add_component('file_type_router', file_type_router)
|
54 |
+
preprocessing_pipeline.add_component('text_file_converter', text_file_converter)
|
55 |
+
preprocessing_pipeline.add_component('markdown_converter', markdown_converter)
|
56 |
+
preprocessing_pipeline.add_component('pdf_converter', pdf_converter)
|
57 |
+
preprocessing_pipeline.add_component('document_joiner', document_joiner)
|
58 |
+
preprocessing_pipeline.add_component('document_cleaner', document_cleaner)
|
59 |
+
preprocessing_pipeline.add_component('document_splitter', document_splitter)
|
60 |
+
preprocessing_pipeline.add_component('document_embedder', document_embedder)
|
61 |
+
preprocessing_pipeline.add_component('document_writer', document_writer)
|
62 |
+
|
63 |
+
|
64 |
+
# Connections
|
65 |
+
|
66 |
+
preprocessing_pipeline.connect('file_type_router.text/plain', 'text_file_converter.sources')
|
67 |
+
preprocessing_pipeline.connect('file_type_router.application/pdf', 'pdf_converter.sources')
|
68 |
+
preprocessing_pipeline.connect('file_type_router.text/markdown', 'markdown_converter.sources')
|
69 |
+
preprocessing_pipeline.connect('text_file_converter', 'document_joiner')
|
70 |
+
preprocessing_pipeline.connect('markdown_converter', 'document_joiner')
|
71 |
+
preprocessing_pipeline.connect('pdf_converter', 'document_joiner')
|
72 |
+
preprocessing_pipeline.connect('document_joiner', 'document_cleaner')
|
73 |
+
preprocessing_pipeline.connect('document_cleaner', 'document_splitter')
|
74 |
+
preprocessing_pipeline.connect('document_splitter', 'document_embedder')
|
75 |
+
preprocessing_pipeline.connect('document_embedder', 'document_writer')
|
76 |
+
|
77 |
+
|
78 |
+
@component
|
79 |
+
class ListJoiner:
|
80 |
+
def __init__(self, _type: Any):
|
81 |
+
component.set_output_types(self, values=_type)
|
82 |
+
|
83 |
+
def run(self, values:Variadic[Any]):
|
84 |
+
result = list(chain(*values))
|
85 |
+
return {'values':result}
|
86 |
+
|
87 |
+
|
88 |
+
memory_store = InMemoryChatMessageStore()
|
89 |
+
|
90 |
+
query_rephrase_template="""
|
91 |
+
Rewrite the question for search while keeping its meaning and key terms intact.
|
92 |
+
If the conversation history is empty, DO NOT change the query.
|
93 |
+
Use conversation history only if necessary, and avoid extending the query with your own knowledge.
|
94 |
+
If no changes are needed, output the current question as is.
|
95 |
+
|
96 |
+
Conversation history:
|
97 |
+
{% for memory in memories %}
|
98 |
+
{{ memory.content }}
|
99 |
+
{% endfor %}
|
100 |
+
|
101 |
+
User Query: {{query}}
|
102 |
+
Rewritten Query:
|
103 |
+
"""
|
104 |
+
|
105 |
+
|
106 |
+
conversational_rag = Pipeline()
|
107 |
+
|
108 |
+
#Query rephrasing components
|
109 |
+
conversational_rag.add_component("query_rephrase_prompt_builder",PromptBuilder(query_rephrase_template))
|
110 |
+
conversational_rag.add_component('query_rephrase_llm',CohereGenerator())
|
111 |
+
conversational_rag.add_component('list_to_str_adapter', OutputAdapter(template="{{ replies[0] }}", output_type=str))
|
112 |
+
|
113 |
+
#RAG components
|
114 |
+
conversational_rag.add_component('retriever', InMemoryBM25Retriever(document_store=document_store, top_k=3))
|
115 |
+
conversational_rag.add_component('prompt_builder', ChatPromptBuilder(variables=["query", "documents", "memories"],required_variables=['query', 'documents', 'memories']))
|
116 |
+
conversational_rag.add_component('llm', CohereChatGenerator())
|
117 |
+
|
118 |
+
#Memory components
|
119 |
+
conversational_rag.add_component('memory_retriever',ChatMessageRetriever(memory_store))
|
120 |
+
conversational_rag.add_component('memory_writer', ChatMessageWriter(memory_store))
|
121 |
+
conversational_rag.add_component('memory_joiner', ListJoiner(List[ChatMessage]))
|
122 |
+
|
123 |
+
|
124 |
+
#Query Rephrasing Connections
|
125 |
+
conversational_rag.connect('memory_retriever', 'query_rephrase_prompt_builder.memories')
|
126 |
+
conversational_rag.connect('query_rephrase_prompt_builder.prompt', 'query_rephrase_llm' )
|
127 |
+
conversational_rag.connect('query_rephrase_llm.replies', 'list_to_str_adapter')
|
128 |
+
conversational_rag.connect('list_to_str_adapter', 'retriever.query')
|
129 |
+
|
130 |
+
#RAG connections
|
131 |
+
conversational_rag.connect('retriever.documents', 'prompt_builder.documents')
|
132 |
+
conversational_rag.connect('prompt_builder.prompt', 'llm.messages')
|
133 |
+
conversational_rag.connect('llm.replies', 'memory_joiner')
|
134 |
+
|
135 |
+
#Memory Connections
|
136 |
+
conversational_rag.connect('memory_joiner','memory_writer')
|
137 |
+
conversational_rag.connect('memory_retriever','prompt_builder.memories')
|
138 |
+
|
139 |
+
|
140 |
+
system_message = ChatMessage.from_system("""You are an intelligent and cheerful AI assistant specialized in assisting humans with queries based on provided supporting documents and conversation history.
|
141 |
+
Always prioritize accurate and concise answers derived from the documents, and offer contextually relevant follow-up questions to maintain an engaging and helpful conversation.
|
142 |
+
If the answer is not present in the documents, politely inform the user while suggesting alternative ways to help""")
|
143 |
+
|
144 |
+
user_message_template ="""Based on the conversation history and the provided supporting documents, provide a brief and accurate answer to the question.
|
145 |
+
Make the conversation feel more natural and engaging
|
146 |
+
|
147 |
+
- Format your response for clarity and readability, using bullet points, paragraphs, or lists where necessary.
|
148 |
+
- Note: Supporting documents are not part of the conversation history.
|
149 |
+
- If the question cannot be answered using the supporting documents, respond with: "The answer is not available in the provided documents."
|
150 |
+
|
151 |
+
Conversation History:
|
152 |
+
{% for memory in memories %}
|
153 |
+
{{ memory.content }}
|
154 |
+
{% endfor %}
|
155 |
+
|
156 |
+
Supporting Documents:
|
157 |
+
{% for doc in documents %}
|
158 |
+
{{ doc.content }}
|
159 |
+
{% endfor %}
|
160 |
+
|
161 |
+
Question: {{ query }}
|
162 |
+
Answer:
|
163 |
+
|
164 |
+
"""
|
165 |
+
user_message = ChatMessage.from_user(user_message_template)
|
166 |
+
|