Spaces:
Sleeping
Sleeping
File size: 8,637 Bytes
4e1967e b0485f1 4e1967e b292ae6 4e1967e b0485f1 f18c709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor
import matplotlib.pyplot as plt
import moviepy.editor as mp
import requests
import spacy
import speech_recognition as sr
import tensorflow as tf
from flask import Flask, jsonify, request
from flask_cors import CORS
from io import BytesIO
from requests import get
from string import punctuation
from tqdm import tqdm
from transformers import BartTokenizer, T5ForConditionalGeneration, T5Tokenizer, TFBartForConditionalGeneration
from youtube_transcript_api import YouTubeTranscriptApi as yta
from wordcloud import WordCloud
from heapq import nlargest
from werkzeug.utils import secure_filename
from spacy.lang.en.stop_words import STOP_WORDS
# Change the directory to the backend folder
# os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")
# Create a Flask app
app = Flask(__name__)
CORS(app)
# Function to extract video ID from YouTube link
def extract_video_id(youtube_link):
pattern = re.compile(r'(?<=v=)[a-zA-Z0-9_-]+(?=&|\b|$)')
match = pattern.search(youtube_link)
if match:
return match.group()
else:
return None
@app.route('/',methods=['GET'])
def hello():
h = "<h1>Hello World</h1>"
return h
# Route for uploading video files
@app.route('/upload_video', methods=['POST'])
def upload_video():
start_time = time.time()
if 'video' not in request.files:
return jsonify({'error': 'No video file found in the request'})
video = request.files['video']
if video.mimetype.split('/')[0] != 'video':
return jsonify({'error': 'The file uploaded is not a video'})
model_name = request.form.get('modelName')
print("MODEL:", model_name)
backend_folder = 'backend_videos'
if not os.path.exists(backend_folder):
os.makedirs(backend_folder)
video_path = os.path.join(backend_folder, secure_filename(video.filename))
video.save(video_path)
transcript = transcribe_audio(video_path)
summary = ""
if model_name == 'T5':
summary = summarize_text_t5(transcript)
elif model_name == 'BART':
summary = summarize_text_bart(transcript)
else:
summary = summarizer(transcript)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Video saved successfully. Time taken: {elapsed_time} seconds")
return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})
# Route for uploading YouTube video links
@app.route('/youtube_upload_video', methods=['POST'])
def upload_youtube_video():
start_time = time.time()
transcript = "Testing text"
summary = "Testing text"
model_name = request.form.get('modelName')
youtube_link = request.form.get('link')
print('link', youtube_link)
video_id = extract_video_id(youtube_link)
if video_id is None:
return jsonify({'message': 'successful', 'transcript': "error with youtube link", 'summary': "error with youtube link", 'modelName': model_name})
transcript = generate_and_save_transcript_with_visuals(video_id)
summary = ""
if model_name == 'T5':
summary = summarize_text_t5(transcript)
elif model_name == 'BART':
summary = summarize_text_bart(transcript)
else:
summary = summarizer(transcript)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Video saved successfully. Time taken: {elapsed_time} seconds")
return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})
# Function to generate transcript and visuals for YouTube videos
def generate_and_save_transcript_with_visuals(video_id, file_name="yt_generated_transcript.txt"):
try:
data = yta.get_transcript(video_id)
transcript = ''
for value in tqdm(data, desc="Downloading Transcript", unit=" lines"):
for key, val in value.items():
if key == 'text':
transcript += val + ' '
transcript = transcript.strip()
return transcript
except Exception as e:
print(f"Error: {str(e)}")
# Transcribe audio from video
def transcribe_audio(file_path, chunk_duration=30):
video = mp.VideoFileClip(file_path)
audio = video.audio
audio.write_audiofile("sample_audio.wav", codec='pcm_s16le')
r = sr.Recognizer()
with sr.AudioFile("sample_audio.wav") as source:
audio = r.record(source)
total_duration = len(audio.frame_data) / audio.sample_rate
total_chunks = int(total_duration / chunk_duration) + 1
all_text = []
def transcribe_chunk(start):
nonlocal all_text
chunk = audio.get_segment(start * 1000, (start + chunk_duration) * 1000)
try:
text = r.recognize_google(chunk)
all_text.append(text)
print(f" Chunk {start}-{start+chunk_duration}: {text}")
except sr.UnknownValueError:
all_text.append("")
except sr.RequestError as e:
all_text.append(f"[Error: {e}]")
num_threads = min(total_chunks, total_chunks + 5)
with ThreadPoolExecutor(max_workers=num_threads) as executor:
list(tqdm(executor.map(transcribe_chunk, range(0, int(total_duration), chunk_duration)),
total=total_chunks, desc="Transcribing on multithreading: "))
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(' '.join(all_text))
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
return ' '.join(all_text)
# Load pre-trained models and tokenizers
tokenizer_bart = BartTokenizer.from_pretrained('facebook/bart-large')
tokenizer_t5 = T5Tokenizer.from_pretrained('t5-small')
with tf.device('/CPU:0'):
model_t5 = T5ForConditionalGeneration.from_pretrained("Dhrumit1314/T5_TextSummary")
model_bart = TFBartForConditionalGeneration.from_pretrained("Dhrumit1314/BART_TextSummary")
# Function to summarize text using T5 model
def summarize_text_t5(text):
start_time = time.time()
t5_prepared_Text = "summarize: "+text
tokenized_text = tokenizer_t5.encode(t5_prepared_Text, return_tensors="pt")
summary_ids = model_t5.generate(tokenized_text,
num_beams=4,
no_repeat_ngram_size=2,
min_length=256,
max_length=512,
early_stopping=True)
output = tokenizer_t5.decode(summary_ids[0], skip_special_tokens=True)
end_time = time.time()
print(f"Execution time for T5 Model: {end_time - start_time} seconds")
return output
def summarize_text_bart(text):
start_time = time.time()
inputs = tokenizer_bart([text], max_length=1024, return_tensors='tf')
summary_ids = model_bart.generate(inputs['input_ids'], num_beams=4, max_length=256, early_stopping=True)
output = [tokenizer_bart.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
end_time = time.time()
print(f"Execution time for BART Model: {end_time - start_time} seconds")
return output[0]
# Spacy summarizer
def summarizer(rawdocs):
stopwords = list(STOP_WORDS)
nlp = spacy.load('en_core_web_sm')
doc = nlp(rawdocs)
tokens = [token.text for token in doc]
word_freq = {}
for word in doc:
if word.text.lower() not in stopwords and word.text.lower() not in punctuation:
if word.text not in word_freq.keys():
word_freq[word.text] = 1
else:
word_freq[word.text] += 1
max_freq = max(word_freq.values())
for word in word_freq.keys():
word_freq[word] = word_freq[word]/max_freq
sent_tokens = [sent for sent in doc.sents]
sent_scores = {}
for sent in sent_tokens:
for word in sent:
if word.text in word_freq.keys():
if sent not in sent_scores.keys():
sent_scores[sent] = word_freq[word.text]
else:
sent_scores[sent] += word_freq[word.text]
select_len = int(len(sent_tokens) * 0.3)
summary = nlargest(select_len, sent_scores, key=sent_scores.get)
final_summary = [word.text for word in summary]
summary = ' '.join(final_summary)
return summary
# Main run function
if __name__ == '__main__':
# os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")
app.run(debug=True, port=7860, host='0.0.0.0', use_reloader=False) |