File size: 8,637 Bytes
4e1967e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0485f1
4e1967e
 
 
 
 
 
 
 
 
 
 
 
 
 
b292ae6
 
 
 
 
 
4e1967e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0485f1
f18c709
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor
import matplotlib.pyplot as plt
import moviepy.editor as mp
import requests
import spacy
import speech_recognition as sr
import tensorflow as tf
from flask import Flask, jsonify, request
from flask_cors import CORS
from io import BytesIO
from requests import get
from string import punctuation
from tqdm import tqdm
from transformers import BartTokenizer, T5ForConditionalGeneration, T5Tokenizer, TFBartForConditionalGeneration
from youtube_transcript_api import YouTubeTranscriptApi as yta
from wordcloud import WordCloud
from heapq import nlargest
from werkzeug.utils import secure_filename
from spacy.lang.en.stop_words import STOP_WORDS

# Change the directory to the backend folder
# os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")

# Create a Flask app
app = Flask(__name__)
CORS(app)

# Function to extract video ID from YouTube link
def extract_video_id(youtube_link):
    pattern = re.compile(r'(?<=v=)[a-zA-Z0-9_-]+(?=&|\b|$)')
    match = pattern.search(youtube_link)
    if match:
        return match.group()
    else:
        return None


@app.route('/',methods=['GET'])
def hello():
    h = "<h1>Hello World</h1>"
    return h

# Route for uploading video files
@app.route('/upload_video', methods=['POST'])
def upload_video():
    start_time = time.time()
    if 'video' not in request.files:
        return jsonify({'error': 'No video file found in the request'})
    video = request.files['video']
    if video.mimetype.split('/')[0] != 'video':
        return jsonify({'error': 'The file uploaded is not a video'})

    model_name = request.form.get('modelName')
    print("MODEL:", model_name)

    backend_folder = 'backend_videos'
    if not os.path.exists(backend_folder):
        os.makedirs(backend_folder)
    video_path = os.path.join(backend_folder, secure_filename(video.filename))
    video.save(video_path)

    transcript = transcribe_audio(video_path)

    summary = ""
    if model_name == 'T5':
        summary = summarize_text_t5(transcript)
    elif model_name == 'BART':
        summary = summarize_text_bart(transcript)
    else:
        summary = summarizer(transcript)

    end_time = time.time()
    elapsed_time = end_time - start_time
    print(f"Video saved successfully. Time taken: {elapsed_time} seconds")

    return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})

# Route for uploading YouTube video links
@app.route('/youtube_upload_video', methods=['POST'])
def upload_youtube_video():
    start_time = time.time()
    transcript = "Testing text"
    summary = "Testing text"

    model_name = request.form.get('modelName')
    youtube_link = request.form.get('link')
    print('link', youtube_link)
    video_id = extract_video_id(youtube_link)
    if video_id is None:
        return jsonify({'message': 'successful', 'transcript': "error with youtube link", 'summary': "error with youtube link", 'modelName': model_name})
    
    transcript = generate_and_save_transcript_with_visuals(video_id)
    summary = ""
    if model_name == 'T5':
        summary = summarize_text_t5(transcript)
    elif model_name == 'BART':
        summary = summarize_text_bart(transcript)
    else:
        summary = summarizer(transcript)

    end_time = time.time()
    elapsed_time = end_time - start_time
    print(f"Video saved successfully. Time taken: {elapsed_time} seconds")

    return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})

# Function to generate transcript and visuals for YouTube videos
def generate_and_save_transcript_with_visuals(video_id, file_name="yt_generated_transcript.txt"):
    try:
        data = yta.get_transcript(video_id)
        transcript = ''
        for value in tqdm(data, desc="Downloading Transcript", unit=" lines"):
            for key, val in value.items():
                if key == 'text':
                    transcript += val + ' '
        transcript = transcript.strip()
        return transcript
    except Exception as e:
        print(f"Error: {str(e)}")

# Transcribe audio from video
def transcribe_audio(file_path, chunk_duration=30):
    video = mp.VideoFileClip(file_path)
    audio = video.audio
    audio.write_audiofile("sample_audio.wav", codec='pcm_s16le')

    r = sr.Recognizer()
    with sr.AudioFile("sample_audio.wav") as source:
        audio = r.record(source)

    total_duration = len(audio.frame_data) / audio.sample_rate
    total_chunks = int(total_duration / chunk_duration) + 1

    all_text = []

    def transcribe_chunk(start):
        nonlocal all_text
        chunk = audio.get_segment(start * 1000, (start + chunk_duration) * 1000)
        try:
            text = r.recognize_google(chunk)
            all_text.append(text)
            print(f" Chunk {start}-{start+chunk_duration}: {text}")
        except sr.UnknownValueError:
            all_text.append("")
        except sr.RequestError as e:
            all_text.append(f"[Error: {e}]")

    num_threads = min(total_chunks, total_chunks + 5)
    with ThreadPoolExecutor(max_workers=num_threads) as executor:
        list(tqdm(executor.map(transcribe_chunk, range(0, int(total_duration), chunk_duration)),
                  total=total_chunks, desc="Transcribing on multithreading: "))

    wordcloud = WordCloud(width=800, height=400, background_color="white").generate(' '.join(all_text))
    plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    plt.show()

    return ' '.join(all_text)

# Load pre-trained models and tokenizers
tokenizer_bart = BartTokenizer.from_pretrained('facebook/bart-large')
tokenizer_t5 = T5Tokenizer.from_pretrained('t5-small')

with tf.device('/CPU:0'):
    model_t5 = T5ForConditionalGeneration.from_pretrained("Dhrumit1314/T5_TextSummary")
    model_bart = TFBartForConditionalGeneration.from_pretrained("Dhrumit1314/BART_TextSummary")

# Function to summarize text using T5 model
def summarize_text_t5(text):
    start_time = time.time()
    t5_prepared_Text = "summarize: "+text
    tokenized_text = tokenizer_t5.encode(t5_prepared_Text, return_tensors="pt")
    summary_ids = model_t5.generate(tokenized_text,
                                    num_beams=4,
                                    no_repeat_ngram_size=2,
                                    min_length=256,
                                    max_length=512,
                                    early_stopping=True)
    output = tokenizer_t5.decode(summary_ids[0], skip_special_tokens=True)
    end_time = time.time()
    print(f"Execution time for T5 Model: {end_time - start_time} seconds")
    return output

def summarize_text_bart(text):
    start_time = time.time()
    inputs = tokenizer_bart([text], max_length=1024, return_tensors='tf')
    summary_ids = model_bart.generate(inputs['input_ids'], num_beams=4, max_length=256, early_stopping=True)
    output = [tokenizer_bart.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
    end_time = time.time()
    print(f"Execution time for BART Model: {end_time - start_time} seconds")
    return output[0]

# Spacy summarizer
def summarizer(rawdocs):
    stopwords = list(STOP_WORDS)
    nlp = spacy.load('en_core_web_sm')
    doc = nlp(rawdocs)
    tokens = [token.text for token in doc]
    word_freq = {}
    for word in doc:
        if word.text.lower() not in stopwords and word.text.lower() not in punctuation:
            if word.text not in word_freq.keys():
                word_freq[word.text] = 1
            else:
                word_freq[word.text] += 1

    max_freq = max(word_freq.values())

    for word in word_freq.keys():
        word_freq[word] = word_freq[word]/max_freq

    sent_tokens = [sent for sent in doc.sents]

    sent_scores = {}

    for sent in sent_tokens:
        for word in sent:
            if word.text in word_freq.keys():
                if sent not in sent_scores.keys():
                    sent_scores[sent] = word_freq[word.text]
                else:
                    sent_scores[sent] += word_freq[word.text]

    select_len = int(len(sent_tokens) * 0.3)
    summary = nlargest(select_len, sent_scores, key=sent_scores.get)
    final_summary = [word.text for word in summary]
    summary = ' '.join(final_summary)

    return summary

# Main run function
if __name__ == '__main__':
    # os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")
    app.run(debug=True, port=7860, host='0.0.0.0', use_reloader=False)