import os
import re
import time
from concurrent.futures import ThreadPoolExecutor
import matplotlib.pyplot as plt
import moviepy.editor as mp
import requests
import spacy
import speech_recognition as sr
import tensorflow as tf
from flask import Flask, jsonify, request
from flask_cors import CORS
from io import BytesIO
from requests import get
from string import punctuation
from tqdm import tqdm
from transformers import BartTokenizer, T5ForConditionalGeneration, T5Tokenizer, TFBartForConditionalGeneration
from youtube_transcript_api import YouTubeTranscriptApi as yta
from wordcloud import WordCloud
from heapq import nlargest
from werkzeug.utils import secure_filename
from spacy.lang.en.stop_words import STOP_WORDS
import huggingface_hub as hf_hub
from huggingface_hub import HfApi, HfFolder
# Change the directory to the backend folder
# os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")
# Create a Flask app
app = Flask(__name__)
CORS(app)
# Function to extract video ID from YouTube link
def extract_video_id(youtube_link):
pattern = re.compile(r'(?<=v=)[a-zA-Z0-9_-]+(?=&|\b|$)')
match = pattern.search(youtube_link)
if match:
return match.group()
else:
return None
@app.route('/', methods=['GET'])
def hello():
hostname = request.host
domain = request.url_root
user_agent = request.user_agent.string
# h = f"
Hello World
Hostname: {hostname}
Domain: {domain}
User Agent: {user_agent}
"
h = "This is the backend deployed web page created by NotivAI!!
"
return h
@app.route('/get_humiliated',methods=['GET'])
def hello2():
h = "Hello this is testing!!
"
return h
# Route for uploading video files
@app.route('/upload_video', methods=['POST'])
def upload_video():
start_time = time.time()
if 'video' not in request.files:
return jsonify({'error': 'No video file found in the request'})
video = request.files['video']
if video.mimetype.split('/')[0] != 'video':
return jsonify({'error': 'The file uploaded is not a video'})
model_name = request.form.get('modelName')
print("MODEL:", model_name)
video_path = os.path.join(os.getcwd(), secure_filename(video.filename))
video.save(video_path)
# Initialize HfApi and HfFolder
api = HfApi()
folder = HfFolder()
# Get your Hugging Face API token
token = folder.get_token()
# Specify your namespace (username or organization name)
namespace = "Dhrumit1314/notivai-backend"
# Upload the video file
video_file_id = api.upload_file(
token=token,
path_or_fileobj=video_path,
repo_id=namespace, # replace with your repository ID
path_in_repo=video.filename # replace with the desired path in the repository
)
transcript = transcribe_audio(video_path)
summary = ""
if model_name == 'T5':
summary = summarize_text_t5(transcript)
elif model_name == 'BART':
summary = summarize_text_bart(transcript)
else:
summary = summarizer(transcript)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Video saved successfully. Time taken: {elapsed_time} seconds")
return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name, 'videoFileId': video_file_id})
# def upload_video():
# start_time = time.time()
# if 'video' not in request.files:
# return jsonify({'error': 'No video file found in the request'})
# video = request.files['video']
# if video.mimetype.split('/')[0] != 'video':
# return jsonify({'error': 'The file uploaded is not a video'})
# model_name = request.form.get('modelName')
# print("MODEL:", model_name)
# # backend_folder = 'backend_videos'
# # if not os.path.exists(backend_folder):
# # os.makedirs(backend_folder)
# video_path = os.path.join(os.getcwd(), secure_filename(video.filename))
# video.save(video_path)
# transcript = transcribe_audio(video_path)
# summary = ""
# if model_name == 'T5':
# summary = summarize_text_t5(transcript)
# elif model_name == 'BART':
# summary = summarize_text_bart(transcript)
# else:
# summary = summarizer(transcript)
# end_time = time.time()
# elapsed_time = end_time - start_time
# print(f"Video saved successfully. Time taken: {elapsed_time} seconds")
# return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})
# Route for uploading YouTube video links
@app.route('/youtube_upload_video', methods=['POST'])
def upload_youtube_video():
start_time = time.time()
transcript = "Testing text"
summary = "Testing text"
model_name = request.form.get('modelName')
youtube_link = request.form.get('link')
print('link', youtube_link)
video_id = extract_video_id(youtube_link)
if video_id is None:
return jsonify({'message': 'successful', 'transcript': "error with youtube link", 'summary': "error with youtube link", 'modelName': model_name})
transcript = generate_and_save_transcript_with_visuals(video_id)
summary = ""
if model_name == 'T5':
summary = summarize_text_t5(transcript)
elif model_name == 'BART':
summary = summarize_text_bart(transcript)
else:
summary = summarizer(transcript)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Video saved successfully. Time taken: {elapsed_time} seconds")
return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})
# Function to generate transcript and visuals for YouTube videos
def generate_and_save_transcript_with_visuals(video_id, file_name="yt_generated_transcript.txt"):
try:
data = yta.get_transcript(video_id)
transcript = ''
for value in tqdm(data, desc="Downloading Transcript", unit=" lines"):
for key, val in value.items():
if key == 'text':
transcript += val + ' '
transcript = transcript.strip()
return transcript
except Exception as e:
print(f"Error: {str(e)}")
# Transcribe audio from video
def transcribe_audio(file_path, chunk_duration=30):
video = mp.VideoFileClip(file_path)
audio = video.audio
audio.write_audiofile("sample_audio.wav", codec='pcm_s16le')
r = sr.Recognizer()
with sr.AudioFile("sample_audio.wav") as source:
audio = r.record(source)
total_duration = len(audio.frame_data) / audio.sample_rate
total_chunks = int(total_duration / chunk_duration) + 1
all_text = []
def transcribe_chunk(start):
nonlocal all_text
chunk = audio.get_segment(start * 1000, (start + chunk_duration) * 1000)
try:
text = r.recognize_google(chunk)
all_text.append(text)
print(f" Chunk {start}-{start+chunk_duration}: {text}")
except sr.UnknownValueError:
all_text.append("")
except sr.RequestError as e:
all_text.append(f"[Error: {e}]")
num_threads = min(total_chunks, total_chunks + 5)
with ThreadPoolExecutor(max_workers=num_threads) as executor:
list(tqdm(executor.map(transcribe_chunk, range(0, int(total_duration), chunk_duration)),
total=total_chunks, desc="Transcribing on multithreading: "))
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(' '.join(all_text))
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
return ' '.join(all_text)
# Load pre-trained models and tokenizers
tokenizer_bart = BartTokenizer.from_pretrained('facebook/bart-large')
tokenizer_t5 = T5Tokenizer.from_pretrained('t5-small')
with tf.device('/CPU:0'):
model_t5 = T5ForConditionalGeneration.from_pretrained("Dhrumit1314/T5_TextSummary")
model_bart = TFBartForConditionalGeneration.from_pretrained("Dhrumit1314/BART_TextSummary")
# Function to summarize text using T5 model
def summarize_text_t5(text):
start_time = time.time()
t5_prepared_Text = "summarize: "+text
tokenized_text = tokenizer_t5.encode(t5_prepared_Text, return_tensors="pt")
summary_ids = model_t5.generate(tokenized_text,
num_beams=4,
no_repeat_ngram_size=2,
min_length=256,
max_length=512,
early_stopping=True)
output = tokenizer_t5.decode(summary_ids[0], skip_special_tokens=True)
end_time = time.time()
print(f"Execution time for T5 Model: {end_time - start_time} seconds")
return output
def summarize_text_bart(text):
start_time = time.time()
inputs = tokenizer_bart([text], max_length=1024, return_tensors='tf')
summary_ids = model_bart.generate(inputs['input_ids'], num_beams=4, max_length=256, early_stopping=True)
output = [tokenizer_bart.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
end_time = time.time()
print(f"Execution time for BART Model: {end_time - start_time} seconds")
return output[0]
# Spacy summarizer
def summarizer(rawdocs):
stopwords = list(STOP_WORDS)
nlp = spacy.load('en_core_web_sm')
doc = nlp(rawdocs)
tokens = [token.text for token in doc]
word_freq = {}
for word in doc:
if word.text.lower() not in stopwords and word.text.lower() not in punctuation:
if word.text not in word_freq.keys():
word_freq[word.text] = 1
else:
word_freq[word.text] += 1
max_freq = max(word_freq.values())
for word in word_freq.keys():
word_freq[word] = word_freq[word]/max_freq
sent_tokens = [sent for sent in doc.sents]
sent_scores = {}
for sent in sent_tokens:
for word in sent:
if word.text in word_freq.keys():
if sent not in sent_scores.keys():
sent_scores[sent] = word_freq[word.text]
else:
sent_scores[sent] += word_freq[word.text]
select_len = int(len(sent_tokens) * 0.3)
summary = nlargest(select_len, sent_scores, key=sent_scores.get)
final_summary = [word.text for word in summary]
summary = ' '.join(final_summary)
return summary
# Main run function
if __name__ == '__main__':
# os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")
app.run(debug=True, port=7860, host='0.0.0.0', use_reloader=False)