File size: 5,140 Bytes
e6c45ad
 
 
 
 
ddef685
3ab2099
e6c45ad
ddef685
e6c45ad
 
 
 
 
 
ddef685
e6c45ad
 
ddef685
e6c45ad
 
 
ddef685
e6c45ad
ddef685
e6c45ad
 
 
ddef685
 
e6c45ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab2099
 
 
 
 
 
e6c45ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47120b4
fbd10e8
e6c45ad
 
7e2033c
76177a8
fbd10e8
 
 
 
 
 
 
e6c45ad
 
 
8d8fa10
e6c45ad
 
 
8d8fa10
e6c45ad
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import nltk 
import openai
import time
import gradio as gr
from threading import Thread #线程  用于定时器
import testlinkspark

from assets.char_poses_base64 import ( #角色动作
    CHAR_IDLE_HTML, CHAR_THINKING_HTML, CHAR_TALKING_HTML)

from app_utils import (
    get_chat_history, initialize_knowledge_base, 
    text_to_speech_gen, logging, buzz_user)

global FUNC_CALL #全局变量 用于判断角色动作
FUNC_CALL = 0

global BUZZ_TIMEOUT #全局变量 用于定时器
BUZZ_TIMEOUT = 60

GENERAL_RSPONSE_TRIGGERS = ["I don't understand the question.", "I don't know", "Hello, my name is", "mentioned in the context provided"]
MESSAGES = [{"role": "system", "content": "You are a helpful assistant.You accompany me to practice English and engage in scene dialogue. As a hotel attendant, I am checking in. You introduce the hotel to me and recommend hotel services to me. After receiving my needs, arrange for the service personnel to work. Please remember, my English is not very good. Please have a conversation with me in simple English. After you ask questions in English, please give me some English prompts so that I know how to answer you. Let's start the conversation. You first say hello to me."}]

LOGGER = logging.getLogger('voice_agent') #日志
AUDIO_HTML = ''

# Uncomment If this is your first Run: 
nltk.download('averaged_perceptron_tagger')  #下载语料库
conv_model, voice_model = initialize_knowledge_base()  #初始化知识库


def idle_timer():
    global BUZZ_TIMEOUT

    while True:
        time.sleep(BUZZ_TIMEOUT)
        buzz_user()

        if BUZZ_TIMEOUT == 80:
            time.sleep(BUZZ_TIMEOUT)
            BUZZ_TIMEOUT = 60


def update_img():
    global FUNC_CALL
    FUNC_CALL += 1

    if FUNC_CALL % 2== 0:
        return CHAR_TALKING_HTML
    else:
        return CHAR_THINKING_HTML


def get_response(history, audio_input):

    query_type = 'text'
    question =history[-1][0]

    global BUZZ_TIMEOUT
    BUZZ_TIMEOUT = 80

    if not question:
        if audio_input:
            query_type = 'audio'
            os.rename(audio_input, audio_input + '.wav')
            audio_file = open(audio_input + '.wav', "rb")
            transcript = openai.Audio.transcribe("whisper-1", audio_file)
            question = transcript['text']
        else:
            return None, None

    LOGGER.info("\nquery_type: %s", query_type)
    LOGGER.info("query_text: %s", question)
    print('\nquery_type:', query_type)
    print('\nquery_text:', question)

    if question.lower().strip() == 'hi':
        question = 'hello'
    
    #answer = conv_model.run(question)
    answer = testlinkspark.main(appid="d2ff57e0",
            api_secret="YjlmNDdkYjFmMGMzYjc5MmJiODFjN2Fi",
            api_key="07963fbc530a42f4ad223517decfd5fe",
            gpt_url="ws://spark-api.xf-yun.com/v1.1/chat",
            question= question)
    LOGGER.info("\ndocument_response: %s", answer)
    print('\ndocument_response:', answer)

    for trigger in GENERAL_RSPONSE_TRIGGERS:
        if trigger in answer:    
            MESSAGES.append({"role": "user", "content": question})
            chat = openai.ChatCompletion.create(
                    model="gpt-3.5-turbo", 
                    messages=MESSAGES,
                    temperature=0.7,
                    n=128,
                    stop="\n"
                    )
            answer = chat.choices[0].message.content
            MESSAGES.append({"role": "assistant", "content": answer})
            LOGGER.info("general_response: %s", answer)
            print('\ngeneral_response:', answer)

    AUDIO_HTML = text_to_speech_gen(answer)
    history[-1][1] = answer

    return history, AUDIO_HTML

# buzz_usr_proc = Thread(target=idle_timer)

with gr.Blocks(css = """#col_image{width:800px; height:800px; margin-left: auto; margin-right: auto;}""") as demo: 
    with gr.Row(scale=0.7):
        output_html = gr.HTML(label="Felix's Voice", value=AUDIO_HTML)
        output_html.visible = False
        image1= gr.Image("assets/NPCtest1.png").style(height=700) #elem_id = "col_image"
        #assistant_character = gr.HTML(label=None, value=CHAR_IDLE_HTML, show_label=False)
        with gr.Column(scale=0.3):
            chatbot = gr.Chatbot(label='Send a text or a voice input').style(height=285)
            with gr.Column():
                msg = gr.Textbox(placeholder='Write a chat & press Enter.', show_label=False).style(container=False)
                with gr.Column(scale=0.5):
                    audio_input = gr.Audio(source="microphone", type='filepath', show_label=False).style(container=False)
                    button = gr.Button(value="Send")

    msg.submit(get_chat_history, [msg, chatbot], [msg, chatbot]
                ).then(get_response, [chatbot, audio_input], [chatbot, output_html]
                )

    button.click(get_chat_history, [msg, chatbot], [msg, chatbot]
                ).then(get_response, [chatbot, audio_input], [chatbot, output_html]
                )
    
    # buzz_usr_proc.start()
    
demo.launch(debug=False, favicon_path='assets/favicon.png', show_api=False, share=False)