new-test-redarc / app.py
DiamondYin's picture
Update app.py
736c5c5
raw
history blame
5.6 kB
import os
import nltk
import openai
import time
import gradio as gr
import tiktoken
from threading import Thread #线程 用于定时器
from assets.char_poses_base64 import ( #角色动作
CHAR_IDLE_HTML, CHAR_THINKING_HTML, CHAR_TALKING_HTML)
from app_utils import (
get_chat_history, initialize_knowledge_base,
text_to_speech_gen, logging, buzz_user)
global max_response_tokens
global token_limit
max_response_tokens = 500
token_limit= 15000
global FUNC_CALL #全局变量 用于判断角色动作
FUNC_CALL = 0
global BUZZ_TIMEOUT #全局变量 用于定时器
BUZZ_TIMEOUT = 60
GENERAL_RSPONSE_TRIGGERS = ["I don't understand the question.", "I don't know", "Hello, my name is", "mentioned in the context provided"]
MESSAGES = [{"role": "system", "content": "你现在是一个优秀的展览馆讲解员,你可以通过文字或语音与客户交流,你可以讲述上海老建筑和历史人物之间的关系。"}]
LOGGER = logging.getLogger('voice_agent') #日志
AUDIO_HTML = ''
# Uncomment If this is your first Run:
nltk.download('averaged_perceptron_tagger') #下载语料库
conv_model, voice_model = initialize_knowledge_base() #初始化知识库
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-16k"):
encoding = tiktoken.encoding_for_model(model)
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
def idle_timer():
global BUZZ_TIMEOUT
while True:
time.sleep(BUZZ_TIMEOUT)
buzz_user()
if BUZZ_TIMEOUT == 80:
time.sleep(BUZZ_TIMEOUT)
BUZZ_TIMEOUT = 60
def update_img():
global FUNC_CALL
FUNC_CALL += 1
if FUNC_CALL % 2== 0:
return CHAR_TALKING_HTML
else:
return CHAR_THINKING_HTML
def get_response(history, audio_input):
query_type = 'text'
question =history[-1][0]
conv_history_tokens = 0
global BUZZ_TIMEOUT
BUZZ_TIMEOUT = 80
if not question:
if audio_input:
query_type = 'audio'
os.rename(audio_input, audio_input + '.wav')
audio_file = open(audio_input + '.wav', "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file)
question = transcript['text']
else:
return None, None
LOGGER.info("\nquery_type: %s", query_type)
LOGGER.info("query_text: %s", question)
print('\nquery_type:', query_type)
print('\nquery_text:', question)
if question.lower().strip() == 'hi':
question = 'hello'
answer = conv_model.run(question)
LOGGER.info("\ndocument_response: %s", answer)
print('\ndocument_response:', answer)
conv_history_tokens = num_tokens_from_messages(MESSAGES)
print("conv_history_tokens: ", conv_history_tokens)
while (conv_history_tokens + max_response_tokens >= token_limit):
del MESSAGES[1]
conv_history_tokens = num_tokens_from_messages(MESSAGES)
print("conv_history_tokens_ajust: ", conv_history_tokens)
for trigger in GENERAL_RSPONSE_TRIGGERS:
if trigger in answer:
MESSAGES.append({"role": "user", "content": question})
chat = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=MESSAGES,
max_tokens=500,
temperature=0.7,
n=128,
stop="\n"
)
answer = chat.choices[0].message.content
MESSAGES.append({"role": "assistant", "content": answer})
LOGGER.info("general_response: %s", answer)
print('\ngeneral_response:', answer)
AUDIO_HTML = text_to_speech_gen(answer)
history[-1][1] = answer
return history, AUDIO_HTML
# buzz_usr_proc = Thread(target=idle_timer)
with gr.Blocks(css = """#col_image{width:800px; height:800px; margin-left: auto; margin-right: auto;}""") as demo:
with gr.Row(scale=0.7):
output_html = gr.HTML(label="Felix's Voice", value=AUDIO_HTML)
output_html.visible = False
image1= gr.Image("assets/NPCtest1.png").style(height=700) #elem_id = "col_image"
#assistant_character = gr.HTML(label=None, value=CHAR_IDLE_HTML, show_label=False)
with gr.Column(scale=0.3):
chatbot = gr.Chatbot(label='Send a text or a voice input').style(height=285)
with gr.Column():
msg = gr.Textbox(placeholder='Write a chat & press Enter.', show_label=False).style(container=False)
with gr.Column(scale=0.5):
audio_input = gr.Audio(source="microphone", type='filepath', show_label=False).style(container=False)
button = gr.Button(value="Send")
msg.submit(get_chat_history, [msg, chatbot], [msg, chatbot]
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
)
button.click(get_chat_history, [msg, chatbot], [msg, chatbot]
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
)
# buzz_usr_proc.start()
demo.launch(debug=False, favicon_path='assets/favicon.png', show_api=False, share=False)