DiamondYin commited on
Commit
7230323
1 Parent(s): 550e253

Update app_utils.py

Browse files
Files changed (1) hide show
  1. app_utils.py +2 -2
app_utils.py CHANGED
@@ -13,7 +13,7 @@ from langchain.chains import RetrievalQA # RetrievalQA is a class in the langch
13
  from langchain.vectorstores import Chroma # Chroma is a class in the langchain.vectorstores module that can be used to store vectors.
14
  from langchain.document_loaders import DirectoryLoader #
15
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAIGPTEmbeddings
16
- from langchain.embeddings import HuggingFaceInstructEmbeddings
17
  from langchain.text_splitter import CharacterTextSplitter # CharacterTextSplitter is a class in the langchain.text_splitter module that can be used to split text into chunks.
18
  #import streamlit as st
19
  from langchain.indexes import VectorstoreIndexCreator #导入向量存储索引创建器
@@ -76,7 +76,7 @@ def initialize_knowledge_base():
76
  # embeddings.append(embedding)
77
 
78
  #vStore = np.concatenate(embeddings, axis=0)
79
- embedding = HuggingFaceInstructEmbeddings()
80
  #openAI_embeddings = OpenAIEmbeddings()
81
  vStore = Chroma.from_documents(doc_texts, embedding) #Chroma是一个类,用于存储向量,from_documents是一个方法,用于从文档中创建向量存储器,openAI_embeddings是一个类,用于将文本转换为向量
82
 
 
13
  from langchain.vectorstores import Chroma # Chroma is a class in the langchain.vectorstores module that can be used to store vectors.
14
  from langchain.document_loaders import DirectoryLoader #
15
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAIGPTEmbeddings
16
+ from langchain.embeddings import HuggingFaceEmbeddings
17
  from langchain.text_splitter import CharacterTextSplitter # CharacterTextSplitter is a class in the langchain.text_splitter module that can be used to split text into chunks.
18
  #import streamlit as st
19
  from langchain.indexes import VectorstoreIndexCreator #导入向量存储索引创建器
 
76
  # embeddings.append(embedding)
77
 
78
  #vStore = np.concatenate(embeddings, axis=0)
79
+ embedding = HuggingFaceEmbeddings(model_name='shibing624/text2vec-base-chinese')
80
  #openAI_embeddings = OpenAIEmbeddings()
81
  vStore = Chroma.from_documents(doc_texts, embedding) #Chroma是一个类,用于存储向量,from_documents是一个方法,用于从文档中创建向量存储器,openAI_embeddings是一个类,用于将文本转换为向量
82