File size: 9,694 Bytes
e547b24
 
 
d5b3011
 
228e953
e547b24
d5b3011
 
 
8d50bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
 
 
 
ae6b5a6
c50b0b7
6f5a32e
e547b24
 
c7accf3
b1cd1e8
c7accf3
e547b24
40d7442
001cbbb
e547b24
9be63af
e547b24
 
79e0fd9
 
e547b24
 
79e0fd9
3f2e57b
 
2d04fb1
26785ab
c50b0b7
 
e547b24
c50b0b7
e547b24
 
c50b0b7
 
f94e79d
 
 
 
e547b24
 
 
 
6f5a32e
 
e547b24
 
 
 
 
 
 
6f5a32e
9ab70d4
e547b24
6f5a32e
e547b24
 
40d7442
 
c50b0b7
 
 
40d7442
 
e547b24
02f8cfa
c50b0b7
02f8cfa
 
228e953
73f7edc
c50b0b7
e547b24
 
c50b0b7
3c9286b
c50b0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ebb83
 
c50b0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd6d12d
 
 
 
 
 
 
c50b0b7
e547b24
6a8ba31
06ca9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import random
import os
import torch
import numpy as np
import cv2
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import DiffusionPipeline
from datetime import datetime
from fastapi import FastAPI

app = FastAPI()

#----------Start of theme----------
theme = gr.themes.Soft(
    primary_hue="zinc",
    secondary_hue="stone",
    font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
    font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
).set(
    body_background_fill='*primary_100',
    body_text_color='secondary_600',
    body_text_color_subdued='*primary_500',
    body_text_weight='500',
    background_fill_primary='*primary_100',
    background_fill_secondary='*secondary_200',
    color_accent='*primary_300',
    border_color_accent_subdued='*primary_400',
    border_color_primary='*primary_400',
    block_background_fill='*primary_300',
    block_border_width='*panel_border_width',
    block_info_text_color='*primary_700',
    block_info_text_size='*text_md',
    panel_background_fill='*primary_200',
    accordion_text_color='*primary_600',
    table_text_color='*primary_600',
    input_background_fill='*primary_50',
    input_background_fill_focus='*primary_100',
    button_primary_background_fill='*primary_500',
    button_primary_background_fill_hover='*primary_400',
    button_primary_text_color='*primary_50',
    button_primary_text_color_hover='*primary_100',
    button_cancel_background_fill='*primary_500',
    button_cancel_background_fill_hover='*primary_400'
)
#----------End of theme----------


API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
    
def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
    if prompt == "" or prompt == None:
        return None

    if lora_id.strip() == "" or lora_id == None:
        lora_id = "black-forest-labs/FLUX.1-dev" 

    key = random.randint(0, 999)

    API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    # print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    # print(f'\033[1mGeneration {key}:\033[0m {prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)
            
        payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image, seed, seed
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None


examples = [
    "a beautiful woman with blonde hair and blue eyes",
    "a beautiful woman with brown hair and grey eyes",
    "a beautiful woman with black hair and brown eyes",
]

css = """
#app-container {
    max-width: 896px;
    margin-left: auto;
    margin-right: auto;
    #body{background-image:"DigiP-AI/FLUX.Dev-LORA/abstract(1).jpg";}
}
   
"""

with gr.Blocks(theme=theme, css=css, elem_id="app-container") as app:
    gr.HTML("<center><h6>🎨 FLUX.1-Dev with LoRA 🇬🇧</h6></center>")
    with gr.Tab("Text to Image"):
        with gr.Column(elem_id="app-container"):
            with gr.Row():
                with gr.Column(elem_id="prompt-container"):
                    with gr.Row():
                        text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                    with gr.Row():
                         with gr.Accordion("Lora trigger words", open=False):
                        		gr.Markdown("""
                                    - **sdxl-realistic**: szn style
                                    - **stylesdxl-cyberpunk**: szn style
                                    - **maxfield-parrish-stylee**: Maxfield Parrish Style
                                    - **surreal-harmony**: Surreal Harmony
                                    - **extremely-detailed**: extremely detailed
                                    - **dark-fantasy**: Dark Fantasy
                                    - **analogredmond**: AnalogRedmAF
                                    - **jules-bastien-lepage-style**: Jules Bastien Lepage Style
                                    - **john-singer-sargent-style**: John Singer Sargent Style
                                    - **alphonse-mucha-style**: Alphonse Mucha Style
                                    - **ultra-realistic-illustration**: ultra realistic illustration
                                    - **eye-catching**: eye-catching
                                    - **john-constable-style**: John Constable Style
                                    - **film-noir**: in the style of FLMNR
                                    - **director-sofia-coppola-style**: Director Sofia Coppola Style
                            		""",
                                    label="Trigger words")                       
                            
                    with gr.Row():
                        custom_lora = gr.Dropdown([" ", "jwu114/lora-sdxl-realistic", "issaccyj/lora-sdxl-cyberpunk", "KappaNeuro/maxfield-parrish-style", "fofr/sdxl-deep-down", "KappaNeuro/surreal-harmony", "ntc-ai/SDXL-LoRA-slider.extremely-detailed", "prithivMLmods/Canopus-LoRA-Flux-FaceRealism", "KappaNeuro/dark-fantasy", "artificialguybr/analogredmond", "KappaNeuro/jules-bastien-lepage-style", "KappaNeuro/john-singer-sargent-style", "KappaNeuro/alphonse-mucha-style", "ntc-ai/SDXL-LoRA-slider.ultra-realistic-illustration", "ntc-ai/SDXL-LoRA-slider.eye-catching", "KappaNeuro/john-constable-style", "dvyio/flux-lora-film-noir", "KappaNeuro/director-sofia-coppola-style"], label="Custom LoRA (Please select)",)
                    with gr.Row():
                        with gr.Accordion("⚙️ Advanced Settings", open=False, elem_id="settings-container"):
                            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="((((out of frame))), deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                            with gr.Row():
                                width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
                                height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
                            steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
                            cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                            method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "DPM Fast" "Euler", "Euler a", "Euler+beta", "Heun", "DDIM", "PLMS", "UniPC"])
                            strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                            seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                    with gr.Row():
                        with gr.Accordion("🫘Seed", open=False):
                            seed_output = gr.Textbox(label="Seed Used", show_copy_button = True, elem_id="seed-output")
                            
            with gr.Row():
                text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
            with gr.Row():                
                clr_button =gr.Button("Clear",variant="primary", elem_id="clear_button")
                clr_button.click(lambda: gr.Textbox(value=""), None, text_prompt)
                
            with gr.Row():
                image_output = gr.Image(type="pil", label="Image Output", format="png", elem_id="gallery")
        
        gr.Examples(
            examples = examples,
            inputs = [text_prompt],
        )

        
        text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output])


app.launch(show_api=False, share=False)