Spaces:
Sleeping
Sleeping
File size: 14,125 Bytes
ff94c33 21e6a30 ff94c33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import gradio as gr
import cv2
import numpy as np
from datetime import datetime
import random
def basic_filter(image, filter_type):
"""Apply basic image filters"""
if filter_type == "Gray Toning":
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
elif filter_type == "Sepia":
sepia_filter = np.array([
[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]
])
return cv2.transform(image, sepia_filter)
elif filter_type == "Voyeur":
# Improved X-ray effect
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
inverted = cv2.bitwise_not(gray)
# Increase contrast
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(inverted)
# Sharpen
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpened = cv2.filter2D(enhanced, -1, kernel)
return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR)
elif filter_type == "Bulanıklaştır":
return cv2.GaussianBlur(image, (15, 15), 0)
def classic_filter(image, filter_type):
"""Classical display filters"""
if filter_type == "Karakalem Effect":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
inverted = cv2.bitwise_not(gray)
blurred = cv2.GaussianBlur(inverted, (21, 21), 0)
sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256)
return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR)
elif filter_type == "Sharpen":
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
return cv2.filter2D(image, -1, kernel)
elif filter_type == "Embossing":
kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
emboss = cv2.filter2D(gray, -1, kernel) + 128
return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR)
elif filter_type == "Edge Detection":
edges = cv2.Canny(image, 100, 200)
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
def createer_filter(image, filter_type):
"""Creative and unusual image filters"""
if filter_type == "Pixel Art":
h, w = image.shape[:2]
piksel_size = 20
small = cv2.resize(image, (w//piksel_size, h//piksel_size))
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
elif filter_type == "Mosaic Effect":
h, w = image.shape[:2]
mozaik_size = 30
for i in range(0, h, mozaik_size):
for j in range(0, w, mozaik_size):
roi = image[i:i+mozaik_size, j:j+mozaik_size]
if roi.size > 0:
color = np.mean(roi, axis=(0,1))
image[i:i+mozaik_size, j:j+mozaik_size] = color
return image
elif filter_type == "Rainbow":
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
h, w = image.shape[:2]
for i in range(h):
hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Night Vision":
green_image = image.copy()
green_image[:,:,0] = 0 # Blue channel
green_image[:,:,2] = 0 # Red channel
return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50)
def special_effects(image, filter_type):
"""Apply special effects"""
if filter_type == "Matrix Effect":
green_matrix = np.zeros_like(image)
green_matrix[:,:,1] = image[:,:,1] # Only green channel
random_brightness = np.random.randint(0, 255, size=image.shape[:2])
green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255)
return green_matrix
elif filter_type == "Wave Effect":
rows, cols = image.shape[:2]
img_output = np.zeros(image.shape, dtype=image.dtype)
for i in range(rows):
for j in range(cols):
offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180))
offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180))
if i+offset_x < rows and j+offset_y < cols:
img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols]
else:
img_output[i,j] = 0
return img_output
elif filter_type == "Time Stamp":
output = image.copy()
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2)
return output
elif filter_type == "Glitch Effect":
glitch = image.copy()
h, w = image.shape[:2]
for _ in range(10):
x1 = random.randint(0, w-50)
y1 = random.randint(0, h-50)
x2 = random.randint(x1, min(x1+50, w))
y2 = random.randint(y1, min(y1+50, h))
glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2],
random.randint(-20, 20),
axis=random.randint(0, 1))
return glitch
def artistic_filter(image, filter_type):
"""Apply artistic image filters"""
if filter_type == "Pop Art":
img_small = cv2.resize(image, None, fx=0.5, fy=0.5)
img_color = cv2.resize(img_small, (image.shape[1], image.shape[0]))
for _ in range(2):
img_color = cv2.bilateralFilter(img_color, 9, 300, 300)
hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = hsv[:,:,1]*1.5
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Oil Paint":
ret = np.float32(image.copy())
ret = cv2.bilateralFilter(ret, 9, 75, 75)
ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15)
ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4)
return np.uint8(ret)
elif filter_type == "Cartoon Film":
# Improved cartoon effect
color = image.copy()
gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
color = cv2.bilateralFilter(color, 9, 300, 300)
cartoon = cv2.bitwise_and(color, color, mask=edges)
# Increase color saturation
hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = hsv[:,:,1]*1.4 # Increase in saturation
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def atmospheric_filter(image, filter_type):
"""Atmospheric Filters"""
if filter_type == "Autumn":
# Improved autumn effect
autumn_filter = np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
])
autumn = cv2.transform(image, autumn_filter)
# Increase color temperature
hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV)
hsv[:,:,0] = hsv[:,:,0]*0.8 # Orange/yellow tones
hsv[:,:,1] = hsv[:,:,1]*1.2 # Increase saturation
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Nostalgia":
# Improved nostalgia effect
# Reduce contrast and add yellowish tone
image = cv2.convertScaleAbs(image, alpha=0.9, beta=10)
sepia = cv2.transform(image, np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
]))
# Dimming effect in corners
h, w = image.shape[:2]
kernel = np.zeros((h, w))
center = (h//2, w//2)
for i in range(h):
for j in range(w):
dist = np.sqrt((i-center[0])**2 + (j-center[1])**2)
kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2))
kernel = np.dstack([kernel]*3)
return cv2.multiply(sepia, kernel).astype(np.uint8)
elif filter_type == "Increase Brightness":
# Improved brightness enhancement
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Increase brightness
hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30)
# Increase the contrast slightly
return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0)
def goruntu_isleme(image, filter_type):
"""Function of main image processing"""
if image is None:
return None
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Process by filter categories
basic_filter_listesi = ["Grey Toning", "Sepia", "Röntgen", "Frain"]
Classic_filters_listesi = ["Caracalem Effect", "Cutify", "Emovation", "Blank Detection"]
creative_filters_listesi = ["Pixel Art", "Mosaic Effect", "Rainbow", "Night Vision"]
ozel_efektler_listesi = ["Matrix Effect", "Window", "Time Stamp," "Glitch Effect"]
artistic_filters_listesi = ["Pop Art", "Oil Paint", "Cartoon"]
atmospheric_filters_list = ["Autumn", "Nostalgia", "Increasing Shiny"]
if filter_type in basic_filter_list:
output = basic_filter(image, filter_type)
elif filter_type in classic_filter_list:
output = classic_filters(image, filter_type)
elif filter_type's creation_filter_list:
output = createer_filters(image, filter_type)
elif filter_type in special_efektler_list:
output = special_efekts(image, filter_type)
elif filter_type in artistic_filters_list:
output = artistic_filters (image, filter_type)
elif filter_type in atmospheric_filters_list:
output = atmospheric_filters(image, filter_type)
else:
output = image
return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output
# Gradio interface
with gr.Blocks(theme=gr.themes.Monochrome()) as app:
gr.Markdown("# 🎨 Super and Unusual Image Filtering Studio")
gr.Markdown("### 🌈 Add magical touches to your photos!")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", label="📸 Upload Photos")
with gr.Accordion("ℹ️ Filter Categories", open=True):
filter_type = gr.Radio(
[
# Basic Filters
"Grey Toning", "Sepia", "Röntgen", "Frain",
#classic_filters_list
"Karakalem Effect," "Cutify", "Emovation", "Bens Perception,"
# Creative Filters
"Picles Art," "Mosaic Effect," "Rainbow," "Night Vision,"
# Special Effects
"Matrix Effect," "Window Effect", "Time Stamp," "Glitch Effect,"
# Artistic Filters
"Pop Art", "Oil Paint", "Cartoon",
#Atmospheric Filters
"Autumn", "Nostalgia", "Increasing Shiny"# Basic Filters
"Grey Toning", "Sepia", "Röntgen", "Frain",
#classic_filters_list
"Karakalem Effect," "Cutify", "Emovation", "Bens Perception,"
# Creative Filters
"Picles Art," "Mosaic Effect," "Rainbow," "Night Vision,"
# Special Effects
"Matrix Effect," "Window Effect", "Time Stamp," "Glitch Effect,"
# Artistic Filters
"Pop Art", "Oil Paint", "Cartoon",
#Atmospheric Filters
"Autumn", "Nostalgia", "Increase of Shiny"
],
label="🎭 Select Filter",
info="Choose the magic effect you want"
)
submit_button = gr.Button("✨ Apply Filter", variant="primary")
with gr.Column():
image_output = gr.Image(label="🖼️ Filtered Photo")
with gr.Accordion("📝 Filter Descriptions", open=False):
gr.Markdown("""
### 🎨 Filter Categories and Effects
#### 📊 Basic Filters
- **Grey Toning**: Turns the image into a classic style in black and white tones
- **Sepia**: Adds warm brown tones that give the photo an old photo vibe
- **Cennant**: Acronyce scanning effect by adding reverse lighting to the image
- **Speaking": It reduces details by creating a soft blur in the image.
#### Classic Filters List
- **Karakalem Effect**: It makes the image look like a charcoal drawing
- **Cutify**: Declare the details in the image
- **Emboss**: Adds embossing and depth effect to the image
- **Bulk Detection: Emphasizes edge lines in the image
#### s Creative Filters
- **Picsel Art***: Dividing the image into small frames in retro pixel style
- **Mosaic Effect**: Divids the photo into small pieces of mosaics
- **Rainbow**: Adds colored rainbow effects to the image
- **Night Vision***: Simulates the night vision device effect
#### s Special Effects
- **Matrix Effect**: Matrix movie effect
- **Ware Effect**: Adds a water wave-like twisted degradation to the image, creating a feeling of ripple
- **Time Stamp***: Adds the date and time of taking the photo on it gives a nostalgic atmosphere
- **Glitch Effect***: Adding digital distortions, adds a retro style error effect to the photo
#### s Artistic Filters
- **Pop Art**: With vivid and contrasted colors, Andy Warhol-style creates iconic pop-art effect
- **Oil Paint***: Simulates brush strokes, giving the image the appearance of oil painting
- **Texture Effect***: Adding surface texture to the image gives a touching depth and a vial of artwork
""")
submit_button.click(
goruntu_isleme,
inputs=[image_input, filter_type],
outputs=image_output
)
app.launch(share=True)
|