File size: 16,911 Bytes
f4ed65d
 
 
 
 
 
 
 
 
ff94c33
 
1585b76
 
 
 
ff94c33
3998a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba8051
 
 
ff94c33
 
 
 
 
 
 
 
 
 
 
d1c2160
ff94c33
 
 
 
 
 
 
 
 
 
35887ec
ff94c33
 
 
 
d1c2160
ff94c33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98104e8
ff94c33
98104e8
ff94c33
98104e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff94c33
 
 
 
 
 
 
 
 
 
 
 
21e6a30
ff94c33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98104e8
ff94c33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283f6d9
 
ff94c33
 
 
 
 
 
 
 
 
283f6d9
ff94c33
 
 
 
 
 
283f6d9
 
ff94c33
 
 
 
 
 
283f6d9
ff94c33
283f6d9
ff94c33
 
283f6d9
 
 
 
ff94c33
 
 
 
 
 
283f6d9
ff94c33
283f6d9
 
ff94c33
 
283f6d9
 
 
ff94c33
 
 
 
 
 
283f6d9
ff94c33
 
 
 
 
 
 
 
 
 
e2d0b33
283f6d9
ff94c33
283f6d9
ff94c33
283f6d9
ff94c33
 
283f6d9
 
ff94c33
 
 
 
 
 
98104e8
 
35887ec
98104e8
e2d0b33
eecfa1c
ff94c33
 
 
 
98104e8
 
d1c2160
 
 
ff94c33
98104e8
ff94c33
 
 
 
 
 
8af1cca
d875af7
24eca0c
 
 
 
48a75fa
d875af7
98104e8
ff94c33
10f9f14
1f2135e
21e32dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e95ba
2189365
559d5a7
 
 
bd45e4c
 
 
2189365
e6e9598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba8051
7970a22
e6e9598
4ba8051
98104e8
4ba8051
ffea667
98104e8
 
 
 
 
 
f4ed65d
21e32dc
f4ed65d
e6e9598
 
 
 
 
 
 
3040a01
 
 
 
ffea667
a6c5125
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import gradio as gr
import random
import os
import torch
import subprocess
import numpy as np
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import DiffusionPipeline
import cv2
from datetime import datetime
from fastapi import FastAPI

app = FastAPI()


#----------Start of theme----------
theme = gr.themes.Soft(
    primary_hue="zinc",
    secondary_hue="stone",
    font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
    font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
).set(
    body_background_fill='*primary_100',
    body_text_color='secondary_600',
    body_text_color_subdued='*primary_500',
    body_text_weight='500',
    background_fill_primary='*primary_100',
    background_fill_secondary='*secondary_200',
    color_accent='*primary_300',
    border_color_accent_subdued='*primary_400',
    border_color_primary='*primary_400',
    block_background_fill='*primary_300',
    block_border_width='*panel_border_width',
    block_info_text_color='*primary_700',
    block_info_text_size='*text_md',
    panel_background_fill='*primary_200',
    accordion_text_color='*primary_600',
    table_text_color='*primary_600',
    input_background_fill='*primary_50',
    input_background_fill_focus='*primary_100',
    button_primary_background_fill='*primary_500',
    button_primary_background_fill_hover='*primary_400',
    button_primary_text_color='*primary_50',
    button_primary_text_color_hover='*primary_100',
    button_cancel_background_fill='*primary_500',
    button_cancel_background_fill_hover='*primary_400'
)
#----------End of theme----------

def flip_image(x):
    return np.fliplr(x)

def basic_filter(image, filter_type):
    """Apply basic image filters"""
    if filter_type == "Gray Toning":
        return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    elif filter_type == "Sepia":
        sepia_filter = np.array([
            [0.272, 0.534, 0.131],
            [0.349, 0.686, 0.168],
            [0.393, 0.769, 0.189]
        ])
        return cv2.transform(image, sepia_filter)
    elif filter_type == "X-ray":
        # Improved X-ray effect
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        inverted = cv2.bitwise_not(gray)
        # Increase contrast
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
        enhanced = clahe.apply(inverted)
        # Sharpen
        kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
        sharpened = cv2.filter2D(enhanced, -1, kernel)
        return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR)
    elif filter_type == "Burn it":
        return cv2.GaussianBlur(image, (15, 15), 0)

def classic_filter(image, filter_type):
    """Classical display filters"""
    if filter_type == "Charcoal Effect":
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        inverted = cv2.bitwise_not(gray)
        blurred = cv2.GaussianBlur(inverted, (21, 21), 0)
        sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256)
        return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR)
    
    elif filter_type == "Sharpen":
        kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
        return cv2.filter2D(image, -1, kernel)
    
    elif filter_type == "Embossing":
        kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]])
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        emboss = cv2.filter2D(gray, -1, kernel) + 128
        return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR)
    
    elif filter_type == "Edge Detection":
        edges = cv2.Canny(image, 100, 200)
        return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)

def creative_filters(image, filter_type):
    """Creative and unusual image filters"""
    if filter_type == "Pixel Art":
        h, w = image.shape[:2]
        piksel_size = 20
        small = cv2.resize(image, (w//piksel_size, h//piksel_size))
        return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
    
    elif filter_type == "Mosaic Effect":
        h, w = image.shape[:2]
        mosaic_size = 30
        for i in range(0, h, mosaic_size):
            for j in range(0, w, mosaic_size):
                roi = image[i:i+mosaic_size, j:j+mosaic_size]
                if roi.size > 0:
                    color = np.mean(roi, axis=(0,1))
                    image[i:i+mosaic_size, j:j+mosaic_size] = color
        return image
    
    elif filter_type == "Rainbow":
        hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        h, w = image.shape[:2]
        for i in range(h):
            hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8)
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
    elif filter_type == "Night Vision":
        green_image = image.copy()
        green_image[:,:,0] = 0  # Blue channel
        green_image[:,:,2] = 0  # Red channel
        return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50)

def special_effects(image, filter_type):
    """Apply special effects"""
    if filter_type == "Matrix Effect":
        green_matrix = np.zeros_like(image)
        green_matrix[:,:,1] = image[:,:,1]  # Only green channel
        random_brightness = np.random.randint(0, 255, size=image.shape[:2])
        green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255)
        return green_matrix
    
    elif filter_type == "Wave Effect":
        rows, cols = image.shape[:2]
        img_output = np.zeros(image.shape, dtype=image.dtype)
        
        for i in range(rows):
            for j in range(cols):
                offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180))
                offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180))
                if i+offset_x < rows and j+offset_y < cols:
                    img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols]
                else:
                    img_output[i,j] = 0
        return img_output
    
    elif filter_type == "Time Stamp":
        output = image.copy()
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        font = cv2.FONT_HERSHEY_SIMPLEX
        cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2)
        return output
    
    elif filter_type == "Glitch Effect":
        glitch = image.copy()
        h, w = image.shape[:2]
        for _ in range(10):
            x1 = random.randint(0, w-50)
            y1 = random.randint(0, h-50)
            x2 = random.randint(x1, min(x1+50, w))
            y2 = random.randint(y1, min(y1+50, h))
            glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2], 
                                          random.randint(-20, 20), 
                                          axis=random.randint(0, 1))
        return glitch

def artistic_filters(image, filter_type):
    """Applies artistic image filters"""
    if filter_type == "Pop Art":
        img_small = cv2.resize(image, None, fx=0.5, fy=0.5)
        img_color = cv2.resize(img_small, (image.shape[1], image.shape[0]))
        for _ in range(2):
            img_color = cv2.bilateralFilter(img_color, 9, 300, 300)
        hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV)
        hsv[:,:,1] = hsv[:,:,1]*1.5
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
    elif filter_type == "Oil Paint":
        ret = np.float32(image.copy())
        ret = cv2.bilateralFilter(ret, 9, 75, 75)
        ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15)
        ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4)
        return np.uint8(ret)
    
    elif filter_type == "Cartoon":
        # Improved cartoon effect
        color = image.copy()
        gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
        gray = cv2.medianBlur(gray, 5)
        edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
        color = cv2.bilateralFilter(color, 9, 300, 300)
        cartoon = cv2.bitwise_and(color, color, mask=edges)
        # Increase color saturation
        hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV)
        hsv[:,:,1] = hsv[:,:,1]*1.4  # saturation increase
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

def atmospheric_filters(image, filter_type):
    """atmospheric filters"""
    if filter_type == "Autumn":
        # Genhanced autumn effect
        autumn_filter = np.array([
            [0.393, 0.769, 0.189],
            [0.349, 0.686, 0.168],
            [0.272, 0.534, 0.131]
        ])
        autumn = cv2.transform(image, autumn_filter)
        # Increase color temperature
        hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV)
        hsv[:,:,0] = hsv[:,:,0]*0.8  # Shift to orange/yellow tones
        hsv[:,:,1] = hsv[:,:,1]*1.2  # Increase saturation
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
    elif filter_type == "Nostalgia":
        # Improved nostalgia effect
        # Reduce contrast and add yellowish tone
        image = cv2.convertScaleAbs(image, alpha=0.9, beta=10)
        sepia = cv2.transform(image, np.array([
            [0.393, 0.769, 0.189],
            [0.349, 0.686, 0.168],
            [0.272, 0.534, 0.131]
        ]))
        # Darkening effect in corners
        h, w = image.shape[:2]
        kernel = np.zeros((h, w))
        center = (h//2, w//2)
        for i in range(h):
            for j in range(w):
                dist = np.sqrt((i-center[0])**2 + (j-center[1])**2)
                kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2))
        kernel = np.dstack([kernel]*3)
        return cv2.multiply(sepia, kernel).astype(np.uint8)
    
    elif filter_type == "Increase Brightness":
        # Improved brightness boost
        hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        # Increase brightness
        hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30)
        # Also increase the contrast slightly
        return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0)

def image_processing(image, filter_type):
    """Main image processing function"""
    if image is None:
        return None
    
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    
    # Process by filter categories
    basic_filter_list = ["Gray Toning", "Sepia", "X-ray", "Burn it"]
    classic_filter_list = ["Charcoal Effect", "Sharpen", "Embossing", "Edge Detection"]
    creative_filters_list = ["Rainbow", "Night Vision"]
    special_effects_list = ["Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect"]
    artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"]
    atmospheric_filters_list = ["Autumn", "Increase Brightness"]
    
    if filter_type in basic_filter_list:
        output = basic_filter(image, filter_type)
    elif filter_type in classic_filter_list:
        output = classic_filter(image, filter_type)
    elif filter_type in creative_filters_list:
        output = creative_filters(image, filter_type)
    elif filter_type in special_effects_list:
        output = special_effects(image, filter_type)
    elif filter_type in artistic_filters_list:
        output = artistic_filters(image, filter_type)
    elif filter_type in atmospheric_filters_list:
        output = atmospheric_filters(image, filter_type)
    else:
        output = image
        
    return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output
    
css = """
app-container {
    max-width: 1200px;
    margin-left: auto;
    margin-right: auto;
}
"""

# Gradio interface
with gr.Blocks(theme=theme, css=css) as app:
    gr.HTML("<center><h6>🎨 Image Studio</h6></center>")

    with gr.Tab("Image to Prompt"): 
        subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

        # Initialize Florence model
        device = "cuda" if torch.cuda.is_available() else "cpu"
        florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
        florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

        # api_key = os.getenv("HF_READ_TOKEN")
        
        def generate_caption(image):
            if not isinstance(image, Image.Image):
                image = Image.fromarray(image)
            
            inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
            generated_ids = florence_model.generate(
                input_ids=inputs["input_ids"],
                pixel_values=inputs["pixel_values"],
                max_new_tokens=1024,
                early_stopping=False,
                do_sample=False,
                num_beams=3,
            )
            generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
            parsed_answer = florence_processor.post_process_generation(
                generated_text,
                task="<MORE_DETAILED_CAPTION>",
                image_size=(image.width, image.height)
            )
            prompt =  parsed_answer["<MORE_DETAILED_CAPTION>"]
            print("\n\nGeneration completed!:"+ prompt)
            return prompt

        io = gr.Interface(generate_caption,
            inputs=[gr.Image(label="Input Image")],
            outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
            # gr.Image(label="Output Image")
                       ]
                    )
    
    with gr.Tab("Text to Image"):
        gr.HTML("<center><h6>ℹ️ Please do not run the models at the same time, the models are currently running on the CPU, which might affect performance.</h6></center>")        
        with gr.Accordion("Flux-RealismLora", open=False):
            model1 = gr.load("models/XLabs-AI/flux-RealismLora")
        with gr.Accordion("Flux--schnell-realism", open=False):
            model2 = gr.load("models/hugovntr/flux-schnell-realism")
        with gr.Accordion("Flux--schnell-LoRA", open=False):
            model3 = gr.load("models/Octree/flux-schnell-lora")
        
    with gr.Tab("Flip Image"):
                with gr.Row():
                    image_input = gr.Image(type="numpy", label="Upload Image")
                    image_output = gr.Image(format="png")
                with gr.Row():    
                    image_button = gr.Button("Run", variant='primary')
                    image_button.click(flip_image, inputs=image_input, outputs=image_output)
    with gr.Tab("Image Filters"):    
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(type="numpy", label="Upload Image")
                with gr.Accordion("ℹ️ Filter Categories", open=True):
                    filter_type = gr.Dropdown(
                        [
                            # Basic Filters
                            "Gray Toning", "Sepia", "X-ray", "Burn it",
                            # Classic Filter 
                            "Charcoal Effect", "Sharpen", "Embossing", "Edge Detection",                       
                            # Creative Filters
                            "Rainbow", "Night Vision",
                            # Special Effects
                            "Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect",
                            # Artistic Filters
                            "Pop Art", "Oil Paint", "Cartoon",
                            # Atmospheric Filters
                            "Autumn", "Increase Brightness"
                        ],
                        label="🎭 Select Filter",
                        info="Choose the effect you want"
                    )
                submit_button = gr.Button("✨ Apply Filter", variant="primary")
    
            with gr.Column():
                image_output = gr.Image(label="🖼️ Filtered Image")
                
            submit_button.click(
                image_processing,
                inputs=[image_input, filter_type],
                outputs=image_output
            )

    
            
    with gr.Tab("Image Upscaler"):    
        with gr.Row():
            with gr.Column():
                def upscale_image(input_image, radio_input):
                    upscale_factor = radio_input
                    output_image = cv2.resize(input_image, None, fx = upscale_factor, fy = upscale_factor, interpolation = cv2.INTER_CUBIC)
                    return output_image
                
                radio_input = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8, 10], value=2)
                
                iface = gr.Interface(fn=upscale_image, inputs = [gr.Image(label="Input Image", interactive=True), radio_input], outputs = gr.Image(label="Upscaled Image", format="png"), title="Image Upscaler")
    
app.launch(share=True)