Spaces:
Running
Running
File size: 17,151 Bytes
f4ed65d ff94c33 1585b76 ff94c33 3998a26 4ba8051 ff94c33 d1c2160 ff94c33 35887ec ff94c33 d1c2160 ff94c33 98104e8 ff94c33 98104e8 ff94c33 98104e8 ff94c33 21e6a30 ff94c33 98104e8 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 e2d0b33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 283f6d9 ff94c33 98104e8 35887ec 98104e8 e2d0b33 eecfa1c ff94c33 98104e8 d1c2160 ff94c33 98104e8 ff94c33 c724114 8af1cca d875af7 af7f3d5 db8f885 48a75fa d875af7 98104e8 ff94c33 10f9f14 1f2135e 21e32dc 51e95ba 2189365 559d5a7 bd45e4c 2189365 e6e9598 4ba8051 7970a22 e6e9598 4ba8051 98104e8 4ba8051 ffea667 98104e8 f4ed65d 21e32dc f4ed65d e6e9598 3040a01 ffea667 a6c5125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import gradio as gr
import random
import os
import torch
import subprocess
import numpy as np
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import DiffusionPipeline
import cv2
from datetime import datetime
from fastapi import FastAPI
app = FastAPI()
#----------Start of theme----------
theme = gr.themes.Soft(
primary_hue="zinc",
secondary_hue="stone",
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
).set(
body_background_fill='*primary_100',
body_text_color='secondary_600',
body_text_color_subdued='*primary_500',
body_text_weight='500',
background_fill_primary='*primary_100',
background_fill_secondary='*secondary_200',
color_accent='*primary_300',
border_color_accent_subdued='*primary_400',
border_color_primary='*primary_400',
block_background_fill='*primary_300',
block_border_width='*panel_border_width',
block_info_text_color='*primary_700',
block_info_text_size='*text_md',
panel_background_fill='*primary_200',
accordion_text_color='*primary_600',
table_text_color='*primary_600',
input_background_fill='*primary_50',
input_background_fill_focus='*primary_100',
button_primary_background_fill='*primary_500',
button_primary_background_fill_hover='*primary_400',
button_primary_text_color='*primary_50',
button_primary_text_color_hover='*primary_100',
button_cancel_background_fill='*primary_500',
button_cancel_background_fill_hover='*primary_400'
)
#----------End of theme----------
def flip_image(x):
return np.fliplr(x)
def basic_filter(image, filter_type):
"""Apply basic image filters"""
if filter_type == "Gray Toning":
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
elif filter_type == "Sepia":
sepia_filter = np.array([
[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]
])
return cv2.transform(image, sepia_filter)
elif filter_type == "X-ray":
# Improved X-ray effect
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
inverted = cv2.bitwise_not(gray)
# Increase contrast
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(inverted)
# Sharpen
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpened = cv2.filter2D(enhanced, -1, kernel)
return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR)
elif filter_type == "Burn it":
return cv2.GaussianBlur(image, (15, 15), 0)
def classic_filter(image, filter_type):
"""Classical display filters"""
if filter_type == "Charcoal Effect":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
inverted = cv2.bitwise_not(gray)
blurred = cv2.GaussianBlur(inverted, (21, 21), 0)
sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256)
return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR)
elif filter_type == "Sharpen":
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
return cv2.filter2D(image, -1, kernel)
elif filter_type == "Embossing":
kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
emboss = cv2.filter2D(gray, -1, kernel) + 128
return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR)
elif filter_type == "Edge Detection":
edges = cv2.Canny(image, 100, 200)
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
def creative_filters(image, filter_type):
"""Creative and unusual image filters"""
if filter_type == "Pixel Art":
h, w = image.shape[:2]
piksel_size = 20
small = cv2.resize(image, (w//piksel_size, h//piksel_size))
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
elif filter_type == "Mosaic Effect":
h, w = image.shape[:2]
mosaic_size = 30
for i in range(0, h, mosaic_size):
for j in range(0, w, mosaic_size):
roi = image[i:i+mosaic_size, j:j+mosaic_size]
if roi.size > 0:
color = np.mean(roi, axis=(0,1))
image[i:i+mosaic_size, j:j+mosaic_size] = color
return image
elif filter_type == "Rainbow":
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
h, w = image.shape[:2]
for i in range(h):
hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Night Vision":
green_image = image.copy()
green_image[:,:,0] = 0 # Blue channel
green_image[:,:,2] = 0 # Red channel
return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50)
def special_effects(image, filter_type):
"""Apply special effects"""
if filter_type == "Matrix Effect":
green_matrix = np.zeros_like(image)
green_matrix[:,:,1] = image[:,:,1] # Only green channel
random_brightness = np.random.randint(0, 255, size=image.shape[:2])
green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255)
return green_matrix
elif filter_type == "Wave Effect":
rows, cols = image.shape[:2]
img_output = np.zeros(image.shape, dtype=image.dtype)
for i in range(rows):
for j in range(cols):
offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180))
offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180))
if i+offset_x < rows and j+offset_y < cols:
img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols]
else:
img_output[i,j] = 0
return img_output
elif filter_type == "Time Stamp":
output = image.copy()
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2)
return output
elif filter_type == "Glitch Effect":
glitch = image.copy()
h, w = image.shape[:2]
for _ in range(10):
x1 = random.randint(0, w-50)
y1 = random.randint(0, h-50)
x2 = random.randint(x1, min(x1+50, w))
y2 = random.randint(y1, min(y1+50, h))
glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2],
random.randint(-20, 20),
axis=random.randint(0, 1))
return glitch
def artistic_filters(image, filter_type):
"""Applies artistic image filters"""
if filter_type == "Pop Art":
img_small = cv2.resize(image, None, fx=0.5, fy=0.5)
img_color = cv2.resize(img_small, (image.shape[1], image.shape[0]))
for _ in range(2):
img_color = cv2.bilateralFilter(img_color, 9, 300, 300)
hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = hsv[:,:,1]*1.5
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Oil Paint":
ret = np.float32(image.copy())
ret = cv2.bilateralFilter(ret, 9, 75, 75)
ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15)
ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4)
return np.uint8(ret)
elif filter_type == "Cartoon":
# Improved cartoon effect
color = image.copy()
gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
color = cv2.bilateralFilter(color, 9, 300, 300)
cartoon = cv2.bitwise_and(color, color, mask=edges)
# Increase color saturation
hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = hsv[:,:,1]*1.4 # saturation increase
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def atmospheric_filters(image, filter_type):
"""atmospheric filters"""
if filter_type == "Autumn":
# Genhanced autumn effect
autumn_filter = np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
])
autumn = cv2.transform(image, autumn_filter)
# Increase color temperature
hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV)
hsv[:,:,0] = hsv[:,:,0]*0.8 # Shift to orange/yellow tones
hsv[:,:,1] = hsv[:,:,1]*1.2 # Increase saturation
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Nostalgia":
# Improved nostalgia effect
# Reduce contrast and add yellowish tone
image = cv2.convertScaleAbs(image, alpha=0.9, beta=10)
sepia = cv2.transform(image, np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
]))
# Darkening effect in corners
h, w = image.shape[:2]
kernel = np.zeros((h, w))
center = (h//2, w//2)
for i in range(h):
for j in range(w):
dist = np.sqrt((i-center[0])**2 + (j-center[1])**2)
kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2))
kernel = np.dstack([kernel]*3)
return cv2.multiply(sepia, kernel).astype(np.uint8)
elif filter_type == "Increase Brightness":
# Improved brightness boost
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Increase brightness
hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30)
# Also increase the contrast slightly
return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0)
def image_processing(image, filter_type):
"""Main image processing function"""
if image is None:
return None
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Process by filter categories
basic_filter_list = ["Gray Toning", "Sepia", "X-ray", "Burn it"]
classic_filter_list = ["Charcoal Effect", "Sharpen", "Embossing", "Edge Detection"]
creative_filters_list = ["Rainbow", "Night Vision"]
special_effects_list = ["Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect"]
artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"]
atmospheric_filters_list = ["Autumn", "Increase Brightness"]
if filter_type in basic_filter_list:
output = basic_filter(image, filter_type)
elif filter_type in classic_filter_list:
output = classic_filter(image, filter_type)
elif filter_type in creative_filters_list:
output = creative_filters(image, filter_type)
elif filter_type in special_effects_list:
output = special_effects(image, filter_type)
elif filter_type in artistic_filters_list:
output = artistic_filters(image, filter_type)
elif filter_type in atmospheric_filters_list:
output = atmospheric_filters(image, filter_type)
else:
output = image
return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output
# Get absolute path of image file
image_path = 'https://huggingface.co/spaces/DigiP-AI/Image_Studio/blob/main/abstract.jpg' # Replace with your image file path
absolute_path = os.path.abspath(image_path)
css = """
.gradio-container {
background: url(https://huggingface.co/spaces/DigiP-AI/Image_Studio/blob/main/abstract.jpg)
}
"""
# Gradio interface
with gr.Blocks(theme=theme, css=css) as app:
gr.HTML("<center><h6>🎨 Image Studio</h6></center>")
with gr.Tab("Image to Prompt"):
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Initialize Florence model
device = "cuda" if torch.cuda.is_available() else "cpu"
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
# api_key = os.getenv("HF_READ_TOKEN")
def generate_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
print("\n\nGeneration completed!:"+ prompt)
return prompt
io = gr.Interface(generate_caption,
inputs=[gr.Image(label="Input Image")],
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
# gr.Image(label="Output Image")
]
)
with gr.Tab("Text to Image"):
gr.HTML("<center><h6>ℹ️ Please do not run the models at the same time, the models are currently running on the CPU, which might affect performance.</h6></center>")
with gr.Accordion("Flux-RealismLora", open=False):
model1 = gr.load("models/XLabs-AI/flux-RealismLora")
with gr.Accordion("Flux--schnell-realism", open=False):
model2 = gr.load("models/hugovntr/flux-schnell-realism")
with gr.Accordion("Flux--schnell-LoRA", open=False):
model3 = gr.load("models/Octree/flux-schnell-lora")
with gr.Tab("Flip Image"):
with gr.Row():
image_input = gr.Image(type="numpy", label="Upload Image")
image_output = gr.Image(format="png")
with gr.Row():
image_button = gr.Button("Run", variant='primary')
image_button.click(flip_image, inputs=image_input, outputs=image_output)
with gr.Tab("Image Filters"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image")
with gr.Accordion("ℹ️ Filter Categories", open=True):
filter_type = gr.Dropdown(
[
# Basic Filters
"Gray Toning", "Sepia", "X-ray", "Burn it",
# Classic Filter
"Charcoal Effect", "Sharpen", "Embossing", "Edge Detection",
# Creative Filters
"Rainbow", "Night Vision",
# Special Effects
"Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect",
# Artistic Filters
"Pop Art", "Oil Paint", "Cartoon",
# Atmospheric Filters
"Autumn", "Increase Brightness"
],
label="🎭 Select Filter",
info="Choose the effect you want"
)
submit_button = gr.Button("✨ Apply Filter", variant="primary")
with gr.Column():
image_output = gr.Image(label="🖼️ Filtered Image")
submit_button.click(
image_processing,
inputs=[image_input, filter_type],
outputs=image_output
)
with gr.Tab("Image Upscaler"):
with gr.Row():
with gr.Column():
def upscale_image(input_image, radio_input):
upscale_factor = radio_input
output_image = cv2.resize(input_image, None, fx = upscale_factor, fy = upscale_factor, interpolation = cv2.INTER_CUBIC)
return output_image
radio_input = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8, 10], value=2)
iface = gr.Interface(fn=upscale_image, inputs = [gr.Image(label="Input Image", interactive=True), radio_input], outputs = gr.Image(label="Upscaled Image", format="png"), title="Image Upscaler")
app.launch(share=True)
|