Image_Studio / app.py
DigiP-AI's picture
Update app.py
611c3a0 verified
raw
history blame
13.8 kB
import gradio as gr
import cv2
import numpy as np
import torch
from datetime import datetime
from diffusers import DiffusionPipeline
import random
#----------Start of theme----------
theme = gr.themes.Soft(
primary_hue="zinc",
secondary_hue="stone",
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
).set(
body_background_fill='*primary_100',
body_text_color='secondary_600',
body_text_color_subdued='*primary_500',
body_text_weight='500',
background_fill_primary='*primary_100',
background_fill_secondary='*secondary_200',
color_accent='*primary_300',
border_color_accent_subdued='*primary_400',
border_color_primary='*primary_400',
block_background_fill='*primary_300',
block_border_width='*panel_border_width',
block_info_text_color='*primary_700',
block_info_text_size='*text_md',
panel_background_fill='*primary_200',
accordion_text_color='*primary_600',
table_text_color='*primary_600',
input_background_fill='*primary_50',
input_background_fill_focus='*primary_100',
button_primary_background_fill='*primary_500',
button_primary_background_fill_hover='*primary_400',
button_primary_text_color='*primary_50',
button_primary_text_color_hover='*primary_100',
button_cancel_background_fill='*primary_500',
button_cancel_background_fill_hover='*primary_400'
)
#----------End of theme----------
def flip_image(x):
return np.fliplr(x)
def basic_filter(image, filter_type):
"""Apply basic image filters"""
if filter_type == "Gray Toning":
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
elif filter_type == "Sepia":
sepia_filter = np.array([
[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]
])
return cv2.transform(image, sepia_filter)
elif filter_type == "X-ray":
# Improved X-ray effect
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
inverted = cv2.bitwise_not(gray)
# Increase contrast
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(inverted)
# Sharpen
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpened = cv2.filter2D(enhanced, -1, kernel)
return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR)
elif filter_type == "Burn it":
return cv2.GaussianBlur(image, (15, 15), 0)
def classic_filter(image, filter_type):
"""Classical display filters"""
if filter_type == "Charcoal Effect":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
inverted = cv2.bitwise_not(gray)
blurred = cv2.GaussianBlur(inverted, (21, 21), 0)
sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256)
return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR)
elif filter_type == "Sharpen":
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
return cv2.filter2D(image, -1, kernel)
elif filter_type == "Embossing":
kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
emboss = cv2.filter2D(gray, -1, kernel) + 128
return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR)
elif filter_type == "Edge Detection":
edges = cv2.Canny(image, 100, 200)
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
def creative_filters(image, filter_type):
"""Creative and unusual image filters"""
if filter_type == "Pixel Art":
h, w = image.shape[:2]
piksel_size = 20
small = cv2.resize(image, (w//piksel_size, h//piksel_size))
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
elif filter_type == "Mosaic Effect":
h, w = image.shape[:2]
mosaic_size = 30
for i in range(0, h, mosaic_size):
for j in range(0, w, mosaic_size):
roi = image[i:i+mosaic_size, j:j+mosaic_size]
if roi.size > 0:
color = np.mean(roi, axis=(0,1))
image[i:i+mosaic_size, j:j+mosaic_size] = color
return image
elif filter_type == "Rainbow":
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
h, w = image.shape[:2]
for i in range(h):
hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Night Vision":
green_image = image.copy()
green_image[:,:,0] = 0 # Blue channel
green_image[:,:,2] = 0 # Red channel
return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50)
def special_effects(image, filter_type):
"""Apply special effects"""
if filter_type == "Matrix Effect":
green_matrix = np.zeros_like(image)
green_matrix[:,:,1] = image[:,:,1] # Only green channel
random_brightness = np.random.randint(0, 255, size=image.shape[:2])
green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255)
return green_matrix
elif filter_type == "Wave Effect":
rows, cols = image.shape[:2]
img_output = np.zeros(image.shape, dtype=image.dtype)
for i in range(rows):
for j in range(cols):
offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180))
offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180))
if i+offset_x < rows and j+offset_y < cols:
img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols]
else:
img_output[i,j] = 0
return img_output
elif filter_type == "Time Stamp":
output = image.copy()
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2)
return output
elif filter_type == "Glitch Effect":
glitch = image.copy()
h, w = image.shape[:2]
for _ in range(10):
x1 = random.randint(0, w-50)
y1 = random.randint(0, h-50)
x2 = random.randint(x1, min(x1+50, w))
y2 = random.randint(y1, min(y1+50, h))
glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2],
random.randint(-20, 20),
axis=random.randint(0, 1))
return glitch
def artistic_filters(image, filter_type):
"""Applies artistic image filters"""
if filter_type == "Pop Art":
img_small = cv2.resize(image, None, fx=0.5, fy=0.5)
img_color = cv2.resize(img_small, (image.shape[1], image.shape[0]))
for _ in range(2):
img_color = cv2.bilateralFilter(img_color, 9, 300, 300)
hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = hsv[:,:,1]*1.5
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Oil Paint":
ret = np.float32(image.copy())
ret = cv2.bilateralFilter(ret, 9, 75, 75)
ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15)
ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4)
return np.uint8(ret)
elif filter_type == "Cartoon":
# Improved cartoon effect
color = image.copy()
gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
color = cv2.bilateralFilter(color, 9, 300, 300)
cartoon = cv2.bitwise_and(color, color, mask=edges)
# Increase color saturation
hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = hsv[:,:,1]*1.4 # saturation increase
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def atmospheric_filters(image, filter_type):
"""atmospheric filters"""
if filter_type == "Autumn":
# Genhanced autumn effect
autumn_filter = np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
])
autumn = cv2.transform(image, autumn_filter)
# Increase color temperature
hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV)
hsv[:,:,0] = hsv[:,:,0]*0.8 # Shift to orange/yellow tones
hsv[:,:,1] = hsv[:,:,1]*1.2 # Increase saturation
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
elif filter_type == "Nostalgia":
# Improved nostalgia effect
# Reduce contrast and add yellowish tone
image = cv2.convertScaleAbs(image, alpha=0.9, beta=10)
sepia = cv2.transform(image, np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
]))
# Darkening effect in corners
h, w = image.shape[:2]
kernel = np.zeros((h, w))
center = (h//2, w//2)
for i in range(h):
for j in range(w):
dist = np.sqrt((i-center[0])**2 + (j-center[1])**2)
kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2))
kernel = np.dstack([kernel]*3)
return cv2.multiply(sepia, kernel).astype(np.uint8)
elif filter_type == "Increase Brightness":
# Improved brightness boost
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Increase brightness
hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30)
# Also increase the contrast slightly
return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0)
def image_processing(image, filter_type):
"""Main image processing function"""
if image is None:
return None
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Process by filter categories
basic_filter_list = ["Gray Toning", "Sepia", "X-ray", "Burn it"]
classic_filter_list = ["Charcoal Effect", "Sharpen", "Embossing", "Edge Detection"]
creative_filters_list = ["Rainbow", "Night Vision"]
special_effects_list = ["Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect"]
artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"]
atmospheric_filters_list = ["Autumn", "Increase Brightness"]
if filter_type in basic_filter_list:
output = basic_filter(image, filter_type)
elif filter_type in classic_filter_list:
output = classic_filter(image, filter_type)
elif filter_type in creative_filters_list:
output = creative_filters(image, filter_type)
elif filter_type in special_effects_list:
output = special_effects(image, filter_type)
elif filter_type in artistic_filters_list:
output = artistic_filters(image, filter_type)
elif filter_type in atmospheric_filters_list:
output = atmospheric_filters(image, filter_type)
else:
output = image
return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output
css = """
#app-container {
max-width: 1200px;
margin-left: auto;
margin-right: auto;
}
"""
# Gradio interface
with gr.Blocks(theme=theme, css=css) as app:
gr.HTML("<center><h6>🎨 Image Studio</h6></center>")
with gr.Tab("Text to Image"):
# gr.load("models/digiplay/AnalogMadness-realistic-model-v7")
gr.load("models/XLabs-AI/flux-RealismLora")
image_input = gr.Image(type="numpy", label="Upload Image")
image_output = gr.Image(format="png")
with gr.Tab("Flip Image"):
with gr.Row():
image_input = gr.Image(type="numpy", label="Upload Image")
image_output = gr.Image(format="png")
with gr.Row():
image_button = gr.Button("Run", variant='primary')
image_button.click(flip_image, inputs=image_input, outputs=image_output)
with gr.Tab("Image Filters"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image")
with gr.Accordion("ℹ️ Filter Categories", open=True):
filter_type = gr.Dropdown(
[
# Basic Filters
"Gray Toning", "Sepia", "X-ray", "Burn it",
# Classic Filter
"Charcoal Effect", "Sharpen", "Embossing", "Edge Detection",
# Creative Filters
"Rainbow", "Night Vision",
# Special Effects
"Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect",
# Artistic Filters
"Pop Art", "Oil Paint", "Cartoon",
# Atmospheric Filters
"Autumn", "Increase Brightness"
],
label="🎭 Select Filter",
info="Choose the effect you want"
)
submit_button = gr.Button("✨ Apply Filter", variant="primary")
with gr.Column():
image_output = gr.Image(label="🖼️ Filtered Image")
submit_button.click(
image_processing,
inputs=[image_input, filter_type],
outputs=image_output
)
app.launch(share=False)