Spaces:
Running
Running
import gradio as gr | |
import random | |
import os | |
import torch | |
import subprocess | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from diffusers import DiffusionPipeline | |
import cv2 | |
from datetime import datetime | |
from fastapi import FastAPI | |
app = FastAPI() | |
#----------Start of theme---------- | |
theme = gr.themes.Soft( | |
primary_hue="zinc", | |
secondary_hue="stone", | |
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'], | |
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'], | |
).set( | |
body_background_fill='*primary_100', | |
body_text_color='secondary_600', | |
body_text_color_subdued='*primary_500', | |
body_text_weight='500', | |
background_fill_primary='*primary_100', | |
background_fill_secondary='*secondary_200', | |
color_accent='*primary_300', | |
border_color_accent_subdued='*primary_400', | |
border_color_primary='*primary_400', | |
block_background_fill='*primary_300', | |
block_border_width='*panel_border_width', | |
block_info_text_color='*primary_700', | |
block_info_text_size='*text_md', | |
panel_background_fill='*primary_200', | |
accordion_text_color='*primary_600', | |
table_text_color='*primary_600', | |
input_background_fill='*primary_50', | |
input_background_fill_focus='*primary_100', | |
button_primary_background_fill='*primary_500', | |
button_primary_background_fill_hover='*primary_400', | |
button_primary_text_color='*primary_50', | |
button_primary_text_color_hover='*primary_100', | |
button_cancel_background_fill='*primary_500', | |
button_cancel_background_fill_hover='*primary_400' | |
) | |
#----------End of theme---------- | |
def flip_image(x): | |
return np.fliplr(x) | |
def basic_filter(image, filter_type): | |
"""Apply basic image filters""" | |
if filter_type == "Gray Toning": | |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
elif filter_type == "Sepia": | |
sepia_filter = np.array([ | |
[0.272, 0.534, 0.131], | |
[0.349, 0.686, 0.168], | |
[0.393, 0.769, 0.189] | |
]) | |
return cv2.transform(image, sepia_filter) | |
elif filter_type == "X-ray": | |
# Improved X-ray effect | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
inverted = cv2.bitwise_not(gray) | |
# Increase contrast | |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) | |
enhanced = clahe.apply(inverted) | |
# Sharpen | |
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) | |
sharpened = cv2.filter2D(enhanced, -1, kernel) | |
return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR) | |
elif filter_type == "Burn it": | |
return cv2.GaussianBlur(image, (15, 15), 0) | |
def classic_filter(image, filter_type): | |
"""Classical display filters""" | |
if filter_type == "Charcoal Effect": | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
inverted = cv2.bitwise_not(gray) | |
blurred = cv2.GaussianBlur(inverted, (21, 21), 0) | |
sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256) | |
return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR) | |
elif filter_type == "Sharpen": | |
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) | |
return cv2.filter2D(image, -1, kernel) | |
elif filter_type == "Embossing": | |
kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]]) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
emboss = cv2.filter2D(gray, -1, kernel) + 128 | |
return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR) | |
elif filter_type == "Edge Detection": | |
edges = cv2.Canny(image, 100, 200) | |
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) | |
def creative_filters(image, filter_type): | |
"""Creative and unusual image filters""" | |
if filter_type == "Pixel Art": | |
h, w = image.shape[:2] | |
piksel_size = 20 | |
small = cv2.resize(image, (w//piksel_size, h//piksel_size)) | |
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST) | |
elif filter_type == "Mosaic Effect": | |
h, w = image.shape[:2] | |
mosaic_size = 30 | |
for i in range(0, h, mosaic_size): | |
for j in range(0, w, mosaic_size): | |
roi = image[i:i+mosaic_size, j:j+mosaic_size] | |
if roi.size > 0: | |
color = np.mean(roi, axis=(0,1)) | |
image[i:i+mosaic_size, j:j+mosaic_size] = color | |
return image | |
elif filter_type == "Rainbow": | |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
h, w = image.shape[:2] | |
for i in range(h): | |
hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8) | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
elif filter_type == "Night Vision": | |
green_image = image.copy() | |
green_image[:,:,0] = 0 # Blue channel | |
green_image[:,:,2] = 0 # Red channel | |
return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50) | |
def special_effects(image, filter_type): | |
"""Apply special effects""" | |
if filter_type == "Matrix Effect": | |
green_matrix = np.zeros_like(image) | |
green_matrix[:,:,1] = image[:,:,1] # Only green channel | |
random_brightness = np.random.randint(0, 255, size=image.shape[:2]) | |
green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255) | |
return green_matrix | |
elif filter_type == "Wave Effect": | |
rows, cols = image.shape[:2] | |
img_output = np.zeros(image.shape, dtype=image.dtype) | |
for i in range(rows): | |
for j in range(cols): | |
offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180)) | |
offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180)) | |
if i+offset_x < rows and j+offset_y < cols: | |
img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols] | |
else: | |
img_output[i,j] = 0 | |
return img_output | |
elif filter_type == "Time Stamp": | |
output = image.copy() | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2) | |
return output | |
elif filter_type == "Glitch Effect": | |
glitch = image.copy() | |
h, w = image.shape[:2] | |
for _ in range(10): | |
x1 = random.randint(0, w-50) | |
y1 = random.randint(0, h-50) | |
x2 = random.randint(x1, min(x1+50, w)) | |
y2 = random.randint(y1, min(y1+50, h)) | |
glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2], | |
random.randint(-20, 20), | |
axis=random.randint(0, 1)) | |
return glitch | |
def artistic_filters(image, filter_type): | |
"""Applies artistic image filters""" | |
if filter_type == "Pop Art": | |
img_small = cv2.resize(image, None, fx=0.5, fy=0.5) | |
img_color = cv2.resize(img_small, (image.shape[1], image.shape[0])) | |
for _ in range(2): | |
img_color = cv2.bilateralFilter(img_color, 9, 300, 300) | |
hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV) | |
hsv[:,:,1] = hsv[:,:,1]*1.5 | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
elif filter_type == "Oil Paint": | |
ret = np.float32(image.copy()) | |
ret = cv2.bilateralFilter(ret, 9, 75, 75) | |
ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15) | |
ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4) | |
return np.uint8(ret) | |
elif filter_type == "Cartoon": | |
# Improved cartoon effect | |
color = image.copy() | |
gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY) | |
gray = cv2.medianBlur(gray, 5) | |
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9) | |
color = cv2.bilateralFilter(color, 9, 300, 300) | |
cartoon = cv2.bitwise_and(color, color, mask=edges) | |
# Increase color saturation | |
hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV) | |
hsv[:,:,1] = hsv[:,:,1]*1.4 # saturation increase | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
def atmospheric_filters(image, filter_type): | |
"""atmospheric filters""" | |
if filter_type == "Autumn": | |
# Genhanced autumn effect | |
autumn_filter = np.array([ | |
[0.393, 0.769, 0.189], | |
[0.349, 0.686, 0.168], | |
[0.272, 0.534, 0.131] | |
]) | |
autumn = cv2.transform(image, autumn_filter) | |
# Increase color temperature | |
hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV) | |
hsv[:,:,0] = hsv[:,:,0]*0.8 # Shift to orange/yellow tones | |
hsv[:,:,1] = hsv[:,:,1]*1.2 # Increase saturation | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
elif filter_type == "Nostalgia": | |
# Improved nostalgia effect | |
# Reduce contrast and add yellowish tone | |
image = cv2.convertScaleAbs(image, alpha=0.9, beta=10) | |
sepia = cv2.transform(image, np.array([ | |
[0.393, 0.769, 0.189], | |
[0.349, 0.686, 0.168], | |
[0.272, 0.534, 0.131] | |
])) | |
# Darkening effect in corners | |
h, w = image.shape[:2] | |
kernel = np.zeros((h, w)) | |
center = (h//2, w//2) | |
for i in range(h): | |
for j in range(w): | |
dist = np.sqrt((i-center[0])**2 + (j-center[1])**2) | |
kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2)) | |
kernel = np.dstack([kernel]*3) | |
return cv2.multiply(sepia, kernel).astype(np.uint8) | |
elif filter_type == "Increase Brightness": | |
# Improved brightness boost | |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
# Increase brightness | |
hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30) | |
# Also increase the contrast slightly | |
return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0) | |
def image_processing(image, filter_type): | |
"""Main image processing function""" | |
if image is None: | |
return None | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# Process by filter categories | |
basic_filter_list = ["Gray Toning", "Sepia", "X-ray", "Burn it"] | |
classic_filter_list = ["Charcoal Effect", "Sharpen", "Embossing", "Edge Detection"] | |
creative_filters_list = ["Rainbow", "Night Vision"] | |
special_effects_list = ["Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect"] | |
artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"] | |
atmospheric_filters_list = ["Autumn", "Increase Brightness"] | |
if filter_type in basic_filter_list: | |
output = basic_filter(image, filter_type) | |
elif filter_type in classic_filter_list: | |
output = classic_filter(image, filter_type) | |
elif filter_type in creative_filters_list: | |
output = creative_filters(image, filter_type) | |
elif filter_type in special_effects_list: | |
output = special_effects(image, filter_type) | |
elif filter_type in artistic_filters_list: | |
output = artistic_filters(image, filter_type) | |
elif filter_type in atmospheric_filters_list: | |
output = atmospheric_filters(image, filter_type) | |
else: | |
output = image | |
return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output | |
# Get absolute path of image file | |
image_path = 'https://huggingface.co/spaces/DigiP-AI/Image_Studio/blob/main/abstract.jpg' # Replace with your image file path | |
absolute_path = os.path.abspath(image_path) | |
css = """ | |
.gradio-container { | |
background: url(https://huggingface.co/spaces/DigiP-AI/Image_Studio/blob/main/abstract.jpg) | |
} | |
""" | |
# Gradio interface | |
with gr.Blocks(theme=theme, css=css) as app: | |
gr.HTML("<center><h6>🎨 Image Studio</h6></center>") | |
with gr.Tab("Image to Prompt"): | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Initialize Florence model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() | |
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) | |
# api_key = os.getenv("HF_READ_TOKEN") | |
def generate_caption(image): | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task="<MORE_DETAILED_CAPTION>", | |
image_size=(image.width, image.height) | |
) | |
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"] | |
print("\n\nGeneration completed!:"+ prompt) | |
return prompt | |
io = gr.Interface(generate_caption, | |
inputs=[gr.Image(label="Input Image")], | |
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True), | |
# gr.Image(label="Output Image") | |
] | |
) | |
with gr.Tab("Text to Image"): | |
gr.HTML("<center><h6>ℹ️ Please do not run the models at the same time, the models are currently running on the CPU, which might affect performance.</h6></center>") | |
with gr.Accordion("Flux-RealismLora", open=False): | |
model1 = gr.load("models/XLabs-AI/flux-RealismLora") | |
with gr.Accordion("Flux--schnell-realism", open=False): | |
model2 = gr.load("models/hugovntr/flux-schnell-realism") | |
with gr.Accordion("Flux--schnell-LoRA", open=False): | |
model3 = gr.load("models/Octree/flux-schnell-lora") | |
with gr.Tab("Flip Image"): | |
with gr.Row(): | |
image_input = gr.Image(type="numpy", label="Upload Image") | |
image_output = gr.Image(format="png") | |
with gr.Row(): | |
image_button = gr.Button("Run", variant='primary') | |
image_button.click(flip_image, inputs=image_input, outputs=image_output) | |
with gr.Tab("Image Filters"): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="numpy", label="Upload Image") | |
with gr.Accordion("ℹ️ Filter Categories", open=True): | |
filter_type = gr.Dropdown( | |
[ | |
# Basic Filters | |
"Gray Toning", "Sepia", "X-ray", "Burn it", | |
# Classic Filter | |
"Charcoal Effect", "Sharpen", "Embossing", "Edge Detection", | |
# Creative Filters | |
"Rainbow", "Night Vision", | |
# Special Effects | |
"Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect", | |
# Artistic Filters | |
"Pop Art", "Oil Paint", "Cartoon", | |
# Atmospheric Filters | |
"Autumn", "Increase Brightness" | |
], | |
label="🎭 Select Filter", | |
info="Choose the effect you want" | |
) | |
submit_button = gr.Button("✨ Apply Filter", variant="primary") | |
with gr.Column(): | |
image_output = gr.Image(label="🖼️ Filtered Image") | |
submit_button.click( | |
image_processing, | |
inputs=[image_input, filter_type], | |
outputs=image_output | |
) | |
with gr.Tab("Image Upscaler"): | |
with gr.Row(): | |
with gr.Column(): | |
def upscale_image(input_image, radio_input): | |
upscale_factor = radio_input | |
output_image = cv2.resize(input_image, None, fx = upscale_factor, fy = upscale_factor, interpolation = cv2.INTER_CUBIC) | |
return output_image | |
radio_input = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8, 10], value=2) | |
iface = gr.Interface(fn=upscale_image, inputs = [gr.Image(label="Input Image", interactive=True), radio_input], outputs = gr.Image(label="Upscaled Image", format="png"), title="Image Upscaler") | |
app.launch(share=True) | |