Dileep7729 commited on
Commit
5c4e8e0
1 Parent(s): d8b1087

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ from PIL import Image
4
+ from transformers import BlipProcessor, BlipForConditionalGeneration
5
+
6
+ # Load your model and processor
7
+ processor = BlipProcessor.from_pretrained("quadranttechnologies/Dileep_model")
8
+ model = BlipForConditionalGeneration.from_pretrained("quadranttechnologies/Dileep_model")
9
+
10
+ # Define a function to generate captions for the uploaded image
11
+ def generate_caption(image):
12
+ # Convert the image into the required format for the model
13
+ inputs = processor(image, return_tensors="pt")
14
+
15
+ # Generate caption
16
+ outputs = model.generate(**inputs)
17
+ caption = processor.decode(outputs[0], skip_special_tokens=True)
18
+ return caption
19
+
20
+ # Set up Gradio interface for image upload and caption generation
21
+ interface = gr.Interface(
22
+ fn=generate_caption,
23
+ inputs=gr.Image(type="pil"), # Accepts uploaded images
24
+ outputs="text", # Displays the caption as text
25
+ title="Image Captioning Model",
26
+ description="Upload an image to receive a caption generated by the model."
27
+ )
28
+
29
+ # Launch the Gradio app
30
+ if __name__ == "__main__":
31
+ interface.launch()