Spaces:
Runtime error
Runtime error
File size: 58,803 Bytes
b5de3c9 d057fb7 b5de3c9 b03f882 e687c57 b5de3c9 b03f882 b5de3c9 64f9101 b5de3c9 2ffb19d 1856601 b5de3c9 0fcbdc2 b5de3c9 bb236fa b5de3c9 115ab5a b5de3c9 115ab5a b5de3c9 3913e77 47917a8 b5de3c9 3913e77 b5de3c9 3913e77 2810f8f 3913e77 b5de3c9 3913e77 b5de3c9 3913e77 b5de3c9 3913e77 b5de3c9 3913e77 b5de3c9 3913e77 b5de3c9 64f9101 b5de3c9 190b413 b5de3c9 4d7f709 b5de3c9 bb236fa b5de3c9 018cf1b b5de3c9 2ffb19d b5de3c9 aad81b4 b5de3c9 e533760 b5de3c9 4d7f709 b5de3c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 |
# Copyright (c) 2024 Jaerin Lee
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from diffusers import DiffusionPipeline, LCMScheduler, EulerDiscreteScheduler, AutoencoderTiny
from huggingface_hub import hf_hub_download
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from einops import rearrange
from collections import deque
from typing import Tuple, List, Literal, Optional, Union
from PIL import Image
from util import load_model, gaussian_lowpass, shift_to_mask_bbox_center
from data import BackgroundObject, LayerObject, BackgroundState #, LayerState
class StreamMultiDiffusion(nn.Module):
def __init__(
self,
device: torch.device,
dtype: torch.dtype = torch.float16,
sd_version: Literal['1.5'] = '1.5',
hf_key: Optional[str] = None,
lora_key: Optional[str] = None,
use_tiny_vae: bool = True,
t_index_list: List[int] = [0, 4, 12, 25, 37], # [0, 5, 16, 18, 20, 37], Magic number.
width: int = 512,
height: int = 512,
frame_buffer_size: int = 1,
num_inference_steps: int = 50,
guidance_scale: float = 1.2,
delta: float = 1.0,
cfg_type: Literal['none', 'full', 'self', 'initialize'] = 'none',
seed: int = 2024,
autoflush: bool = True,
default_mask_std: float = 8.0,
default_mask_strength: float = 1.0,
default_prompt_strength: float = 0.95,
bootstrap_steps: int = 1,
bootstrap_mix_steps: float = 1.0,
# bootstrap_leak_sensitivity: float = 0.2,
preprocess_mask_cover_alpha: float = 0.3, # TODO
prompt_queue_capacity: int = 256,
mask_type: Literal['discrete', 'semi-continuous', 'continuous'] = 'continuous',
use_xformers: bool = False,
) -> None:
super().__init__()
self.device = device
self.dtype = dtype
self.seed = seed
self.sd_version = sd_version
self.autoflush = autoflush
self.default_mask_std = default_mask_std
self.default_mask_strength = default_mask_strength
self.default_prompt_strength = default_prompt_strength
self.register_buffer('bootstrap_steps', (
bootstrap_steps > torch.arange(len(t_index_list))).float().to(dtype=self.dtype, device=self.device))
self.bootstrap_mix_steps = bootstrap_mix_steps
self.register_buffer('bootstrap_mix_ratios', (
bootstrap_mix_steps - torch.arange(len(t_index_list), device=self.device)).clip_(0, 1).to(self.dtype))
# self.bootstrap_leak_sensitivity = bootstrap_leak_sensitivity
self.preprocess_mask_cover_alpha = preprocess_mask_cover_alpha
self.mask_type = mask_type
### State definition
# [0. Start] -(prepare)-> [1. Initialized]
# [1. Initialized] -(update_background)-> [2. Background Registered] (len(self.prompts)==0)
# [2. Background Registered] -(update_layers)-> [3. Unflushed] (len(self.prompts)>0)
# [3. Unflushed] -(flush)-> [4. Ready]
# [4. Ready] -(any updates)-> [3. Unflushed]
# [4. Ready] -(__call__)-> [4. Ready], continuously returns generated image.
self.ready_checklist = {
'initialized': False,
'background_registered': False,
'layers_ready': False,
'flushed': False,
}
### Session state update queue: for lazy update policy for streaming applications.
self.update_buffer = {
'background': None, # Maintains a single instance of BackgroundObject
'layers': deque(maxlen=prompt_queue_capacity), # Maintains a queue of LayerObjects
}
print(f'[INFO] Loading Stable Diffusion...')
get_scheduler = lambda pipe: LCMScheduler.from_config(pipe.scheduler.config)
lora_weight_name = None
if self.sd_version == '1.5':
if hf_key is not None:
print(f'[INFO] Using custom model key: {hf_key}')
model_key = hf_key
else:
model_key = 'runwayml/stable-diffusion-v1-5'
lora_key = 'latent-consistency/lcm-lora-sdv1-5'
lora_weight_name = 'pytorch_lora_weights.safetensors'
# elif self.sd_version == 'xl':
# model_key = 'stabilityai/stable-diffusion-xl-base-1.0'
# lora_key = 'latent-consistency/lcm-lora-sdxl'
# lora_weight_name = 'pytorch_lora_weights.safetensors'
else:
raise ValueError(f'Stable Diffusion version {self.sd_version} not supported.')
### Internally stored "Session" states
self.state = {
'background': BackgroundState(), # Maintains a single instance of BackgroundState
# 'layers': LayerState(), # Maintains a single instance of LayerState
'model_key': model_key, # The Hugging Face model ID.
}
# Create model
self.i2t_processor = Blip2Processor.from_pretrained('Salesforce/blip2-opt-2.7b')
self.i2t_model = Blip2ForConditionalGeneration.from_pretrained('Salesforce/blip2-opt-2.7b')
self.pipe = load_model(model_key, self.sd_version, self.device, self.dtype).to(dtype=self.dtype)
self.pipe.load_lora_weights(lora_key, weight_name=lora_weight_name, adapter_name='lcm')
# self.pipe.fuse_lora(
# fuse_unet=True,
# fuse_text_encoder=True,
# lora_scale=1.0,
# safe_fusing=False,
# )
self.pipe.to(device=self.device, dtype=self.dtype)
if use_xformers:
self.pipe.enable_xformers_memory_efficient_attention()
self.vae = (
AutoencoderTiny.from_pretrained('madebyollin/taesd', torch_dtype=self.dtype).to(device=self.device)
if use_tiny_vae else self.pipe.vae
)
# self.tokenizer = self.pipe.tokenizer
self.text_encoder = self.pipe.text_encoder
self.unet = self.pipe.unet
self.vae_scale_factor = self.pipe.vae_scale_factor
self.scheduler = get_scheduler(self.pipe)
self.scheduler.set_timesteps(num_inference_steps)
self.generator = None
# Lock the canvas size--changing the canvas size can be implemented by reloading the module.
self.height = height
self.width = width
self.latent_height = int(height // self.pipe.vae_scale_factor)
self.latent_width = int(width // self.pipe.vae_scale_factor)
# For bootstrapping.
# self.white = self.encode_imgs(torch.ones(1, 3, height, width, dtype=self.dtype, device=self.device))
self.white = None
# StreamDiffusion setting.
self.t_list = t_index_list
assert len(self.t_list) > 1, 'Current version only supports diffusion models with multiple steps.'
self.frame_bff_size = frame_buffer_size # f
self.denoising_steps_num = len(self.t_list) # t=2
self.cfg_type = cfg_type
self.num_inference_steps = num_inference_steps
self.guidance_scale = 1.0 if self.cfg_type == 'none' else guidance_scale
self.delta = delta
self.batch_size = self.denoising_steps_num * frame_buffer_size # T = t*f
if self.cfg_type == 'initialize':
self.trt_unet_batch_size = (self.denoising_steps_num + 1) * self.frame_bff_size
elif self.cfg_type == 'full':
self.trt_unet_batch_size = 2 * self.denoising_steps_num * self.frame_bff_size
else:
self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size
print(f'[INFO] Model is loaded!')
# self.reset_seed(self.generator, seed)
# self.reset_latent()
# self.prepare()
# print(f'[INFO] Parameters prepared!')
self.ready_checklist['initialized'] = True
@property
def background(self) -> BackgroundState:
return self.state['background']
# @property
# def layers(self) -> LayerState:
# return self.state['layers']
@property
def num_layers(self) -> int:
return len(self.prompts) if hasattr(self, 'prompts') else 0
@property
def is_ready_except_flush(self) -> bool:
return all(v for k, v in self.ready_checklist.items() if k != 'flushed')
@property
def is_flush_needed(self) -> bool:
return self.autoflush and not self.ready_checklist['flushed']
@property
def is_ready(self) -> bool:
return self.is_ready_except_flush and not self.is_flush_needed
@property
def is_dirty(self) -> bool:
return not (self.update_buffer['background'] is None and len(self.update_buffer['layers']) == 0)
@property
def has_background(self) -> bool:
return self.background.is_empty
# @property
# def has_layers(self) -> bool:
# return len(self.layers) > 0
def __repr__(self) -> str:
return (
f'{type(self).__name__}(\n\tbackground: {str(self.background)},\n\t'
f'model_key: {self.state["model_key"]}\n)'
# f'layers: {str(self.layers)},\n\tmodel_key: {self.state["model_key"]}\n)'
)
def check_integrity(self, throw_error: bool = True) -> bool:
p = len(self.prompts)
flag = (
p != len(self.negative_prompts) or
p != len(self.prompt_strengths) or
p != len(self.masks) or
p != len(self.mask_strengths) or
p != len(self.mask_stds) or
p != len(self.original_masks)
)
if flag and throw_error:
print(
f'LayerState(\n\tlen(prompts): {p},\n\tlen(negative_prompts): {len(self.negative_prompts)},\n\t'
f'len(prompt_strengths): {len(self.prompt_strengths)},\n\tlen(masks): {len(self.masks)},\n\t'
f'len(mask_stds): {len(self.mask_stds)},\n\tlen(mask_strengths): {len(self.mask_strengths)},\n\t'
f'len(original_masks): {len(self.original_masks)}\n)'
)
raise ValueError('[ERROR] LayerState is corrupted!')
return not flag
def check_ready(self) -> bool:
all_except_flushed = all(v for k, v in self.ready_checklist.items() if k != 'flushed')
if all_except_flushed:
if self.is_flush_needed:
self.flush()
return True
print('[WARNING] MagicDraw module is not ready yet! Complete the checklist:')
for k, v in self.ready_checklist.items():
prefix = ' [ v ] ' if v else ' [ x ] '
print(prefix + k.replace('_', ' '))
return False
def reset_seed(self, generator: Optional[torch.Generator] = None, seed: Optional[int] = None) -> None:
generator = torch.Generator(self.device) if generator is None else generator
seed = self.seed if seed is None else seed
self.generator = generator
self.generator.manual_seed(seed)
self.init_noise = torch.randn((self.batch_size, 4, self.latent_height, self.latent_width),
generator=generator, device=self.device, dtype=self.dtype)
self.stock_noise = torch.zeros_like(self.init_noise)
self.ready_checklist['flushed'] = False
def reset_latent(self) -> None:
# initialize x_t_latent (it can be any random tensor)
b = (self.denoising_steps_num - 1) * self.frame_bff_size
if not hasattr(self, 'x_t_latent_buffer'):
self.register_buffer('x_t_latent_buffer', torch.zeros(
(b, 4, self.latent_height, self.latent_width), dtype=self.dtype, device=self.device))
else:
self.x_t_latent_buffer = torch.zeros(
(b, 4, self.latent_height, self.latent_width), dtype=self.dtype, device=self.device)
def reset_state(self) -> None:
# TODO Reset states for context switch between multiple users.
pass
def prepare(self) -> None:
# make sub timesteps list based on the indices in the t_list list and the values in the timesteps list
self.timesteps = self.scheduler.timesteps.to(self.device)
sub_timesteps = []
for t in self.t_list:
sub_timesteps.append(self.timesteps[t])
sub_timesteps_tensor = torch.tensor(sub_timesteps, dtype=torch.long, device=self.device)
if not hasattr(self, 'sub_timesteps_tensor'):
self.register_buffer('sub_timesteps_tensor', sub_timesteps_tensor.repeat_interleave(self.frame_bff_size, dim=0))
else:
self.sub_timesteps_tensor = sub_timesteps_tensor.repeat_interleave(self.frame_bff_size, dim=0)
c_skip_list = []
c_out_list = []
for timestep in sub_timesteps:
c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete(timestep)
c_skip_list.append(c_skip)
c_out_list.append(c_out)
c_skip = torch.stack(c_skip_list).view(len(self.t_list), 1, 1, 1).to(dtype=self.dtype, device=self.device)
c_out = torch.stack(c_out_list).view(len(self.t_list), 1, 1, 1).to(dtype=self.dtype, device=self.device)
if not hasattr(self, 'c_skip'):
self.register_buffer('c_skip', c_skip)
else:
self.c_skip = c_skip
if not hasattr(self, 'c_out'):
self.register_buffer('c_out', c_out)
else:
self.c_out = c_out
alpha_prod_t_sqrt_list = []
beta_prod_t_sqrt_list = []
for timestep in sub_timesteps:
alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt()
beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt()
alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt)
beta_prod_t_sqrt_list.append(beta_prod_t_sqrt)
alpha_prod_t_sqrt = (torch.stack(alpha_prod_t_sqrt_list).view(len(self.t_list), 1, 1, 1)
.to(dtype=self.dtype, device=self.device))
beta_prod_t_sqrt = (torch.stack(beta_prod_t_sqrt_list).view(len(self.t_list), 1, 1, 1)
.to(dtype=self.dtype, device=self.device))
if not hasattr(self, 'alpha_prod_t_sqrt'):
self.register_buffer('alpha_prod_t_sqrt', alpha_prod_t_sqrt.repeat_interleave(self.frame_bff_size, dim=0))
else:
self.alpha_prod_t_sqrt = alpha_prod_t_sqrt.repeat_interleave(self.frame_bff_size, dim=0)
if not hasattr(self, 'beta_prod_t_sqrt'):
self.register_buffer('beta_prod_t_sqrt', beta_prod_t_sqrt.repeat_interleave(self.frame_bff_size, dim=0))
else:
self.beta_prod_t_sqrt = beta_prod_t_sqrt.repeat_interleave(self.frame_bff_size, dim=0)
noise_lvs = ((1 - self.scheduler.alphas_cumprod.to(self.device)[self.sub_timesteps_tensor]) ** 0.5)
if not hasattr(self, 'noise_lvs'):
self.register_buffer('noise_lvs', noise_lvs[None, :, None, None, None])
else:
self.noise_lvs = noise_lvs[None, :, None, None, None]
if not hasattr(self, 'next_noise_lvs'):
self.register_buffer('next_noise_lvs', torch.cat([noise_lvs[1:], noise_lvs.new_zeros(1)])[None, :, None, None, None])
else:
self.next_noise_lvs = torch.cat([noise_lvs[1:], noise_lvs.new_zeros(1)])[None, :, None, None, None]
@torch.no_grad()
def get_text_prompts(self, image: Image.Image) -> str:
r"""A convenient method to extract text prompt from an image.
This is called if the user does not provide background prompt but only
the background image. We use BLIP-2 to automatically generate prompts.
Args:
image (Image.Image): A PIL image.
Returns:
A single string of text prompt.
"""
question = 'Question: What are in the image? Answer:'
inputs = self.i2t_processor(image, question, return_tensors='pt')
out = self.i2t_model.generate(**{k: v.to(self.i2t_model.device) for k, v in inputs.items()}) #, max_new_tokens=75)
prompt = self.i2t_processor.decode(out[0], skip_special_tokens=True).strip()
return prompt
@torch.no_grad()
def encode_imgs(
self,
imgs: torch.Tensor,
generator: Optional[torch.Generator] = None,
add_noise: bool = False,
) -> torch.Tensor:
r"""A wrapper function for VAE encoder of the latent diffusion model.
Args:
imgs (torch.Tensor): An image to get StableDiffusion latents.
Expected shape: (B, 3, H, W). Expected pixel scale: [0, 1].
generator (Optional[torch.Generator]): Seed for KL-Autoencoder.
add_noise (bool): Turn this on for a noisy latent.
Returns:
An image latent embedding with 1/8 size (depending on the auto-
encoder. Shape: (B, 4, H//8, W//8).
"""
def _retrieve_latents(
encoder_output: torch.Tensor,
generator: Optional[torch.Generator] = None,
sample_mode: str = 'sample',
):
if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample':
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax':
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, 'latents'):
return encoder_output.latents
else:
raise AttributeError('[ERROR] Could not access latents of provided encoder_output')
imgs = imgs.to(dtype=self.vae.dtype, device=self.vae.device)
imgs = 2 * imgs - 1
latents = self.vae.config.scaling_factor * _retrieve_latents(self.vae.encode(imgs), generator=generator)
if add_noise:
latents = self.alpha_prod_t_sqrt[0] * latents + self.beta_prod_t_sqrt[0] * self.init_noise[0]
return latents
@torch.no_grad()
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
r"""A wrapper function for VAE decoder of the latent diffusion model.
Args:
latents (torch.Tensor): An image latent to get associated images.
Expected shape: (B, 4, H//8, W//8).
Returns:
An image latent embedding with 1/8 size (depending on the auto-
encoder. Shape: (B, 3, H, W).
"""
latents = 1 / self.vae.config.scaling_factor * latents
latents = latents.to(dtype=self.vae.dtype, device=self.vae.device)
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clip_(0, 1)
return imgs
@torch.no_grad()
def update_background(
self,
image: Optional[Image.Image] = None,
prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
) -> bool:
flag_changed = False
if image is not None:
image_ = image.resize((self.width, self.height))
prompt = self.get_text_prompts(image_) if prompt is None else prompt
negative_prompt = '' if negative_prompt is None else negative_prompt
embed = self.pipe.encode_prompt(
prompt=[prompt],
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=(self.guidance_scale > 1.0),
negative_prompt=[negative_prompt],
) # ((1, 77, 768): cond, (1, 77, 768): uncond)
self.state['background'].image = image
self.state['background'].latent = (
self.encode_imgs(T.ToTensor()(image_)[None].to(self.device, self.dtype))
) # (1, 3, H, W)
self.state['background'].prompt = prompt
self.state['background'].negative_prompt = negative_prompt
self.state['background'].embed = embed
if self.bootstrap_steps[0] > 0:
if self.white is None:
self.white = self.encode_imgs(torch.ones(1, 3, self.height, self.width, dtype=self.dtype, device=self.device))
mix_ratio = self.bootstrap_mix_ratios[:, None, None, None]
self.bootstrap_latent = mix_ratio * self.white + (1.0 - mix_ratio) * self.state['background'].latent
self.ready_checklist['background_registered'] = True
flag_changed = True
else:
if not self.ready_checklist['background_registered']:
print('[WARNING] Register background image first! Request ignored.')
return False
if prompt is not None:
self.background.prompt = prompt
flag_changed = True
if negative_prompt is not None:
self.background.negative_prompt = negative_prompt
flag_changed = True
if flag_changed:
self.background.embed = self.pipe.encode_prompt(
prompt=[self.background.prompt],
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=(self.guidance_scale > 1.0),
negative_prompt=[self.background.negative_prompt],
) # ((1, 77, 768): cond, (1, 77, 768): uncond)
self.ready_checklist['flushed'] = not flag_changed
return flag_changed
@torch.no_grad()
def process_mask(
self,
masks: Optional[Union[torch.Tensor, Image.Image, List[Image.Image]]] = None,
strength: Optional[Union[torch.Tensor, float]] = None,
std: Optional[Union[torch.Tensor, float]] = None,
) -> Tuple[torch.Tensor]:
r"""Fast preprocess of masks for region-based generation with fine-
grained controls.
Mask preprocessing is done in four steps:
1. Resizing: Resize the masks into the specified width and height by
nearest neighbor interpolation.
2. (Optional) Ordering: Masks with higher indices are considered to
cover the masks with smaller indices. Covered masks are decayed
in its alpha value by the specified factor of
`preprocess_mask_cover_alpha`.
3. Blurring: Gaussian blur is applied to the mask with the specified
standard deviation (isotropic). This results in gradual increase of
masked region as the timesteps evolve, naturally blending fore-
ground and the predesignated background. Not strictly required if
you want to produce images from scratch withoout background.
4. Quantization: Split the real-numbered masks of value between [0, 1]
into predefined noise levels for each quantized scheduling step of
the diffusion sampler. For example, if the diffusion model sampler
has noise level of [0.9977, 0.9912, 0.9735, 0.8499, 0.5840], which
is the default noise level of this module with schedule [0, 4, 12,
25, 37], the masks are split into binary masks whose values are
greater than these levels. This results in tradual increase of mask
region as the timesteps increase. Details are described in our
paper at https://arxiv.org/pdf/2403.09055.pdf.
On the Three Modes of `mask_type`:
`self.mask_type` is predefined at the initialization stage of this
pipeline. Three possible modes are available: 'discrete', 'semi-
continuous', and 'continuous'. These define the mask quantization
modes we use. Basically, this (subtly) controls the smoothness of
foreground-background blending. Continuous modes produces nonbinary
masks to further blend foreground and background latents by linear-
ly interpolating between them. Semi-continuous masks only applies
continuous mask at the last step of the LCM sampler. Due to the
large step size of the LCM scheduler, we find that our continuous
blending helps generating seamless inpainting and editing results.
Args:
masks (Union[torch.Tensor, Image.Image, List[Image.Image]]): Masks.
strength (Optional[Union[torch.Tensor, float]]): Mask strength that
overrides the default value. A globally multiplied factor to
the mask at the initial stage of processing. Can be applied
seperately for each mask.
std (Optional[Union[torch.Tensor, float]]): Mask blurring Gaussian
kernel's standard deviation. Overrides the default value. Can
be applied seperately for each mask.
Returns: A tuple of tensors.
- masks: Preprocessed (ordered, blurred, and quantized) binary/non-
binary masks (see the explanation on `mask_type` above) for
region-based image synthesis.
- strengths: Return mask strengths for caching.
- std: Return mask blur standard deviations for caching.
- original_masks: Return original masks for caching.
"""
if masks is None:
kwargs = {'dtype': self.dtype, 'device': self.device}
original_masks = torch.zeros((0, 1, self.latent_height, self.latent_width), dtype=self.dtype)
masks = torch.zeros((0, self.batch_size, 1, self.latent_height, self.latent_width), **kwargs)
strength = torch.zeros((0,), **kwargs)
std = torch.zeros((0,), **kwargs)
return masks, strength, std, original_masks
if isinstance(masks, Image.Image):
masks = [masks]
if isinstance(masks, (tuple, list)):
# Assumes white background for Image.Image;
# inverted boolean masks with shape (1, 1, H, W) for torch.Tensor.
masks = torch.cat([
# (T.ToTensor()(mask.resize((self.width, self.height), Image.NEAREST)) < 0.5)[None, :1]
(1.0 - T.ToTensor()(mask.resize((self.width, self.height), Image.BILINEAR)))[None, :1]
for mask in masks
], dim=0).float().clip_(0, 1)
original_masks = masks
masks = masks.float().to(self.device)
# Background mask alpha is decayed by the specified factor where foreground masks covers it.
if self.preprocess_mask_cover_alpha > 0:
masks = torch.stack([
torch.where(
masks[i + 1:].sum(dim=0) > 0,
mask * self.preprocess_mask_cover_alpha,
mask,
) if i < len(masks) - 1 else mask
for i, mask in enumerate(masks)
], dim=0)
if std is None:
std = self.default_mask_std
if isinstance(std, (int, float)):
std = [std] * len(masks)
if isinstance(std, (list, tuple)):
std = torch.as_tensor(std, dtype=torch.float, device=self.device)
# Mask preprocessing parameters are fetched from the default settings.
if strength is None:
strength = self.default_mask_strength
if isinstance(strength, (int, float)):
strength = [strength] * len(masks)
if isinstance(strength, (list, tuple)):
strength = torch.as_tensor(strength, dtype=torch.float, device=self.device)
if (std > 0).any():
std = torch.where(std > 0, std, 1e-5)
masks = gaussian_lowpass(masks, std)
# NOTE: This `strength` aligns with `denoising strength`. However, with LCM, using strength < 0.96
# gives unpleasant results.
masks = masks * strength[:, None, None, None]
masks = masks.unsqueeze(1).repeat(1, self.noise_lvs.shape[1], 1, 1, 1)
if self.mask_type == 'discrete':
# Discrete mode.
masks = masks > self.noise_lvs
elif self.mask_type == 'semi-continuous':
# Semi-continuous mode (continuous at the last step only).
masks = torch.cat((
masks[:, :-1] > self.noise_lvs[:, :-1],
(
(masks[:, -1:] - self.next_noise_lvs[:, -1:])
/ (self.noise_lvs[:, -1:] - self.next_noise_lvs[:, -1:])
).clip_(0, 1),
), dim=1)
elif self.mask_type == 'continuous':
# Continuous mode: Have the exact same `1` coverage with discrete mode, but the mask gradually
# decreases continuously after the discrete mode boundary to become `0` at the
# next lower threshold.
masks = ((masks - self.next_noise_lvs) / (self.noise_lvs - self.next_noise_lvs)).clip_(0, 1)
# NOTE: Post processing mask strength does not align with conventional 'denoising_strength'. However,
# fine-grained mask alpha channel tuning is available with this form.
# masks = masks * strength[None, :, None, None, None]
masks = rearrange(masks.float(), 'p t () h w -> (p t) () h w')
masks = F.interpolate(masks, size=(self.latent_height, self.latent_width), mode='nearest')
masks = rearrange(masks.to(self.dtype), '(p t) () h w -> p t () h w', p=len(std))
return masks, strength, std, original_masks
@torch.no_grad()
def update_layers(
self,
prompts: Union[str, List[str]],
negative_prompts: Optional[Union[str, List[str]]] = None,
suffix: Optional[str] = None, #', background is ',
prompt_strengths: Optional[Union[torch.Tensor, float, List[float]]] = None,
masks: Optional[Union[torch.Tensor, Image.Image, List[Image.Image]]] = None,
mask_strengths: Optional[Union[torch.Tensor, float, List[float]]] = None,
mask_stds: Optional[Union[torch.Tensor, float, List[float]]] = None,
) -> None:
if not self.ready_checklist['background_registered']:
print('[WARNING] Register background image first! Request ignored.')
return
### Register prompts
if isinstance(prompts, str):
prompts = [prompts]
if negative_prompts is None:
negative_prompts = ''
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
fg_prompt = [p + suffix + self.background.prompt if suffix is not None else p for p in prompts]
self.prompts = fg_prompt
self.negative_prompts = negative_prompts
p = self.num_layers
e = self.pipe.encode_prompt(
prompt=fg_prompt,
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=(self.guidance_scale > 1.0),
negative_prompt=negative_prompts,
) # (p, 77, 768)
if prompt_strengths is None:
prompt_strengths = self.default_prompt_strength
if isinstance(prompt_strengths, (int, float)):
prompt_strengths = [prompt_strengths] * p
if isinstance(prompt_strengths, (list, tuple)):
prompt_strengths = torch.as_tensor(prompt_strengths, dtype=self.dtype, device=self.device)
self.prompt_strengths = prompt_strengths
s = prompt_strengths[:, None, None]
self.prompt_embeds = torch.lerp(self.background.embed[0], e[0], s).repeat(self.batch_size, 1, 1) # (T * p, 77, 768)
if self.guidance_scale > 1.0 and self.cfg_type in ('initialize', 'full'):
b = self.batch_size if self.cfg_type == 'full' else self.frame_bff_size
uncond_prompt_embeds = torch.lerp(self.background.embed[1], e[1], s).repeat(b, 1, 1) # (T * p, 77, 768)
self.prompt_embeds = torch.cat([uncond_prompt_embeds, self.prompt_embeds], dim=0) # (2 * T * p, 77, 768)
self.sub_timesteps_tensor_ = self.sub_timesteps_tensor.repeat_interleave(p) # (T * p,)
self.init_noise_ = self.init_noise.repeat_interleave(p, dim=0) # (T * p, 77, 768)
self.stock_noise_ = self.stock_noise.repeat_interleave(p, dim=0) # (T * p, 77, 768)
self.c_out_ = self.c_out.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
self.c_skip_ = self.c_skip.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
self.beta_prod_t_sqrt_ = self.beta_prod_t_sqrt.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
self.alpha_prod_t_sqrt_ = self.alpha_prod_t_sqrt.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
### Register new masks
if isinstance(masks, Image.Image):
masks = [masks]
n = len(masks) if masks is not None else 0
# Modificiation.
masks, mask_strengths, mask_stds, original_masks = self.process_mask(masks, mask_strengths, mask_stds)
self.counts = masks.sum(dim=0) # (T, 1, h, w)
self.bg_mask = (1 - self.counts).clip_(0, 1) # (T, 1, h, w)
self.masks = masks # (p, T, 1, h, w)
self.mask_strengths = mask_strengths # (p,)
self.mask_stds = mask_stds # (p,)
self.original_masks = original_masks # (p, 1, h, w)
if p > n:
# Add more masks: counts and bg_masks are not changed, but only masks are changed.
self.masks = torch.cat((
self.masks,
torch.zeros(
(p - n, self.batch_size, 1, self.latent_height, self.latent_width),
dtype=self.dtype,
device=self.device,
),
), dim=0)
print(f'[WARNING] Detected more prompts ({p}) than masks ({n}). '
'Automatically adds blank masks for the additional prompts.')
elif p < n:
# Warns user to add more prompts.
print(f'[WARNING] Detected more masks ({n}) than prompts ({p}). '
'Additional masks are ignored until more prompts are provided.')
self.ready_checklist['layers_ready'] = True
self.ready_checklist['flushed'] = False
@torch.no_grad()
def update_single_layer(
self,
idx: Optional[int] = None,
prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
suffix: Optional[str] = None, #', background is ',
prompt_strength: Optional[float] = None,
mask: Optional[Union[torch.Tensor, Image.Image]] = None,
mask_strength: Optional[float] = None,
mask_std: Optional[float] = None,
) -> None:
### Possible input combinations and expected behaviors
# The module will consider a layer, a pair of (prompt, mask), to be 'active' only if a prompt
# is registered. A blank mask will be assigned if no mask is provided for the 'active' layer.
# The layers should be in either of ('active', 'inactive') states. 'inactive' layers will not
# receive any input unless equipped with prompt. 'active' layers receive any input and modify
# their states accordingly. In the actual implementation, only the 'active' layers are stored
# and can be accessed by the fields. Values len(self.prompts) = self.num_layers is the number
# of 'active' layers.
# If no background is registered. The layers should be all 'inactive'.
if not self.ready_checklist['background_registered']:
print('[WARNING] Register background image first! Request ignored.')
return
# The first layer create request should be carrying a prompt. If only mask is drawn without a
# prompt, it just ignores the request--the user will update her request soon.
if self.num_layers == 0:
if prompt is not None:
self.update_layers(
prompts=prompt,
negative_prompts=negative_prompt,
suffix=suffix,
prompt_strengths=prompt_strength,
masks=mask,
mask_strengths=mask_strength,
mask_stds=mask_std,
)
return
# Invalid request indices -> considered as a layer add request.
if idx is None or idx > self.num_layers or idx < 0:
idx = self.num_layers
# Two modes for the layer edits: 'append mode' and 'edit mode'. 'append mode' appends a new
# layer at the end of the layers list. 'edit mode' modifies internal variables for the given
# index. 'append mode' is defined by the request index and strictly requires a prompt input.
is_appending = idx == self.num_layers
if is_appending and prompt is None:
print(f'[WARNING] Creating a new prompt at index ({idx}) but found no prompt. Request ignored.')
return
### Register prompts
# | prompt | neg_prompt | append mode (idx==len) | edit mode (idx<len) |
# | --------- | ---------- | ----------------------- | -------------------- |
# | given | given | append new prompt embed | replace prompt embed |
# | given | not given | append new prompt embed | replace prompt embed |
# | not given | given | NOT ALLOWED | replace prompt embed |
# | not given | not given | NOT ALLOWED | do nothing |
# | prompt_strength | append mode (idx==len) | edit mode (idx<len) |
# | --------------- | ---------------------- | ---------------------------------------------- |
# | given | use given strength | use given strength |
# | not given | use default strength | replace strength / if no existing, use default |
p = self.num_layers
flag_prompt_edited = (
prompt is not None or
negative_prompt is not None or
prompt_strength is not None
)
if flag_prompt_edited:
is_double_cond = self.guidance_scale > 1.0 and self.cfg_type in ('initialize', 'full')
# Synchonize the internal state.
# We have asserted that prompt is not None if the mode is 'appending'.
if prompt is not None:
if suffix is not None:
prompt = prompt + suffix + self.background.prompt
if is_appending:
self.prompts.append(prompt)
else:
self.prompts[idx] = prompt
if negative_prompt is not None:
if is_appending:
self.negative_prompts.append(negative_prompt)
else:
self.negative_prompts[idx] = negative_prompt
elif is_appending:
# Make sure that negative prompts are well specified.
self.negative_prompts.append('')
if is_appending:
if prompt_strength is None:
prompt_strength = self.default_prompt_strength
self.prompt_strengths = torch.cat((
self.prompt_strengths,
torch.as_tensor([prompt_strength], dtype=self.dtype, device=self.device),
), dim=0)
elif prompt_strength is not None:
self.prompt_strengths[idx] = prompt_strength
# Edit currently stored prompt embeddings.
if is_double_cond:
uncond_prompt_embed_, prompt_embed_ = torch.chunk(self.prompt_embeds, 2, dim=0)
uncond_prompt_embed_ = rearrange(uncond_prompt_embed_, '(t p) c1 c2 -> t p c1 c2', p=p)
prompt_embed_ = rearrange(prompt_embed_, '(t p) c1 c2 -> t p c1 c2', p=p)
else:
uncond_prompt_embed_ = None
prompt_embed_ = rearrange(self.prompt_embeds, '(t p) c1 c2 -> t p c1 c2', p=p)
e = self.pipe.encode_prompt(
prompt=self.prompts[idx],
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=(self.guidance_scale > 1.0),
negative_prompt=self.negative_prompts[idx],
) # (1, 77, 768), (1, 77, 768)
s = self.prompt_strengths[idx]
t = prompt_embed_.shape[0]
prompt_embed = torch.lerp(self.background.embed[0], e[0], s)[None].repeat(t, 1, 1, 1) # (1, 77, 768)
if is_double_cond:
uncond_prompt_embed = torch.lerp(self.background.embed[1], e[1], s)[None].repeat(t, 1, 1, 1) # (1, 77, 768)
if is_appending:
prompt_embed_ = torch.cat((prompt_embed_, prompt_embed), dim=1)
if is_double_cond:
uncond_prompt_embed_ = torch.cat((uncond_prompt_embed_, uncond_prompt_embed), dim=1)
else:
prompt_embed_[:, idx:(idx + 1)] = prompt_embed
if is_double_cond:
uncond_prompt_embed_[:, idx:(idx + 1)] = uncond_prompt_embed
self.prompt_embeds = rearrange(prompt_embed_, 't p c1 c2 -> (t p) c1 c2')
if is_double_cond:
uncond_prompt_embeds = rearrange(uncond_prompt_embed_, 't p c1 c2 -> (t p) c1 c2')
self.prompt_embeds = torch.cat([uncond_prompt_embeds, self.prompt_embeds], dim=0) # (2 * T * p, 77, 768)
self.ready_checklist['flushed'] = False
if is_appending:
p = self.num_layers
self.sub_timesteps_tensor_ = self.sub_timesteps_tensor.repeat_interleave(p) # (T * p,)
self.init_noise_ = self.init_noise.repeat_interleave(p, dim=0) # (T * p, 77, 768)
self.stock_noise_ = self.stock_noise.repeat_interleave(p, dim=0) # (T * p, 77, 768)
self.c_out_ = self.c_out.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
self.c_skip_ = self.c_skip.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
self.beta_prod_t_sqrt_ = self.beta_prod_t_sqrt.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
self.alpha_prod_t_sqrt_ = self.alpha_prod_t_sqrt.repeat_interleave(p, dim=0) # (T * p, 1, 1, 1)
### Register new masks
# | mask | std / str | append mode (idx==len) | edit mode (idx<len) |
# | --------- | --------- | ---------------------------- | ----------------------------- |
# | given | given | create mask with given val | create mask with given val |
# | given | not given | create mask with default val | create mask with existing val |
# | not given | given | create blank mask | replace mask with given val |
# | not given | not given | create blank mask | do nothing |
flag_nonzero_mask = False
if mask is not None:
# Mask image is given -> create mask.
mask, strength, std, original_mask = self.process_mask(mask, mask_strength, mask_std)
flag_nonzero_mask = True
elif is_appending:
# No given mask & append mode -> create white mask.
mask = torch.zeros(
(1, self.batch_size, 1, self.latent_height, self.latent_width),
dtype=self.dtype,
device=self.device,
)
strength = torch.as_tensor([self.default_mask_strength], dtype=self.dtype, device=self.device)
std = torch.as_tensor([self.default_mask_std], dtype=self.dtype, device=self.device)
original_mask = torch.zeros((1, 1, self.height, self.width), dtype=self.dtype, device=self.device)
elif mask_std is not None or mask_strength is not None:
# No given mask & edit mode & given std / str -> replace existing mask with given std / str.
if mask_std is None:
mask_std = self.mask_stds[idx:(idx + 1)]
if mask_strength is None:
mask_strength = self.mask_strengths[idx:(idx + 1)]
mask, strength, std, original_mask = self.process_mask(
self.original_masks[idx:(idx + 1)], mask_strength, mask_std)
flag_nonzero_mask = True
else:
# No given mask & no given std & edit mode -> Do nothing.
return
if is_appending:
# Append mode.
self.masks = torch.cat((self.masks, mask), dim=0) # (p, T, 1, h, w)
self.mask_strengths = torch.cat((self.mask_strengths, strength), dim=0) # (p,)
self.mask_stds = torch.cat((self.mask_stds, std), dim=0) # (p,)
self.original_masks = torch.cat((self.original_masks, original_mask), dim=0) # (p, 1, h, w)
if flag_nonzero_mask:
self.counts = self.counts + mask[0] if hasattr(self, 'counts') else mask[0] # (T, 1, h, w)
self.bg_mask = (1 - self.counts).clip_(0, 1) # (T, 1, h, w)
else:
# Edit mode.
if flag_nonzero_mask:
self.counts = self.counts - self.masks[idx] + mask[0] # (T, 1, h, w)
self.bg_mask = (1 - self.counts).clip_(0, 1) # (T, 1, h, w)
self.masks[idx:(idx + 1)] = mask # (p, T, 1, h, w)
self.mask_strengths[idx:(idx + 1)] = strength # (p,)
self.mask_stds[idx:(idx + 1)] = std # (p,)
self.original_masks[idx:(idx + 1)] = original_mask # (p, 1, h, w)
# if flag_nonzero_mask:
# self.ready_checklist['flushed'] = False
@torch.no_grad()
def register_all(
self,
prompts: Union[str, List[str]],
masks: Union[Image.Image, List[Image.Image]],
background: Image.Image,
background_prompt: Optional[str] = None,
background_negative_prompt: str = '',
negative_prompts: Union[str, List[str]] = '',
suffix: Optional[str] = None, #', background is ',
prompt_strengths: float = 1.0,
mask_strengths: float = 1.0,
mask_stds: Union[torch.Tensor, float] = 10.0,
) -> None:
# The order of this registration should not be changed!
self.update_background(background, background_prompt, background_negative_prompt)
self.update_layers(prompts, negative_prompts, suffix, prompt_strengths, masks, mask_strengths, mask_stds)
def update(
self,
background: Optional[Image.Image] = None,
background_prompt: Optional[str] = None,
background_negative_prompt: Optional[str] = None,
idx: Optional[int] = None,
prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
suffix: Optional[str] = None,
prompt_strength: Optional[float] = None,
mask: Optional[Union[torch.Tensor, Image.Image]] = None,
mask_strength: Optional[float] = None,
mask_std: Optional[float] = None,
) -> None:
# For lazy update (to solve minor synchonization problem with gradio).
bq = BackgroundObject(
image=background,
prompt=background_prompt,
negative_prompt=background_negative_prompt,
)
if not bq.is_empty:
self.update_buffer['background'] = bq
lq = LayerObject(
idx=idx,
prompt=prompt,
negative_prompt=negative_prompt,
suffix=suffix,
prompt_strength=prompt_strength,
mask=mask,
mask_strength=mask_strength,
mask_std=mask_std,
)
if not lq.is_empty:
limit = self.update_buffer['layers'].maxlen
# Optimize the prompt queue: Overrride uncommitted layers with the same idx.
new_q = deque(maxlen=limit)
for _ in range(len(self.update_buffer['layers'])):
# Check from the newest to the oldest.
# Copy old requests only if the current query does not carry those requests.
query = self.update_buffer['layers'].pop()
overriden = lq.merge(query)
if not overriden:
new_q.appendleft(query)
self.update_buffer['layers'] = new_q
if len(self.update_buffer['layers']) == limit:
print(f'[WARNING] Maximum prompt change query limit ({limit}) is reached. '
f'Current query {lq} will be ignored.')
else:
self.update_buffer['layers'].append(lq)
@torch.no_grad()
def commit(self) -> None:
flag_changed = self.is_dirty
bq = self.update_buffer['background']
lq = self.update_buffer['layers']
count_bq_req = int(bq is not None and not bq.is_empty)
count_lq_req = len(lq)
if flag_changed:
print(f'[INFO] Requests found: {count_bq_req} background requests '
f'& {count_lq_req} layer requests:\n{str(bq)}, {", ".join([str(l) for l in lq])}')
bq = self.update_buffer['background']
if bq is not None:
self.update_background(**vars(bq))
self.update_buffer['background'] = None
while len(lq) > 0:
l = lq.popleft()
self.update_single_layer(**vars(l))
if flag_changed:
print(f'[INFO] Requests resolved: {count_bq_req} background requests '
f'& {count_lq_req} layer requests.')
def scheduler_step_batch(
self,
model_pred_batch: torch.Tensor,
x_t_latent_batch: torch.Tensor,
idx: Optional[int] = None,
) -> torch.Tensor:
r"""Denoise-only step for reverse diffusion scheduler.
Args:
model_pred_batch (torch.Tensor): Noise prediction results.
x_t_latent_batch (torch.Tensor): Noisy latent.
idx (Optional[int]): Instead of timesteps (in [0, 1000]-scale) use
indices for the timesteps tensor (ranged in
[0, len(timesteps)-1]). Specify only if a single-index, not
stream-batched inference is what you want.
Returns:
A denoised tensor with the same size as latent.
"""
if idx is None:
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt_ * model_pred_batch) / self.alpha_prod_t_sqrt_
denoised_batch = self.c_out_ * F_theta + self.c_skip_ * x_t_latent_batch
else:
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch) / self.alpha_prod_t_sqrt[idx]
denoised_batch = self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch
return denoised_batch
def unet_step(
self,
x_t_latent: torch.Tensor, # (T, 4, h, w)
idx: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
p = self.num_layers
x_t_latent = x_t_latent.repeat_interleave(p, dim=0) # (T * p, 4, h, w)
if self.bootstrap_steps[0] > 0:
# Background bootstrapping.
bootstrap_latent = self.scheduler.add_noise(
self.bootstrap_latent,
self.stock_noise,
self.sub_timesteps_tensor.clone().detach().to(self.device),
)
x_t_latent = rearrange(x_t_latent, '(t p) c h w -> p t c h w', p=p)
bootstrap_mask = (
self.masks * self.bootstrap_steps[None, :, None, None, None]
+ (1.0 - self.bootstrap_steps[None, :, None, None, None])
) # (p, t, c, h, w)
x_t_latent = (1.0 - bootstrap_mask) * bootstrap_latent[None] + bootstrap_mask * x_t_latent
x_t_latent = rearrange(x_t_latent, 'p t c h w -> (t p) c h w')
# Centering.
x_t_latent = shift_to_mask_bbox_center(x_t_latent, rearrange(self.masks, 'p t c h w -> (t p) c h w'), reverse=True)
t_list = self.sub_timesteps_tensor_ # (T * p,)
if self.guidance_scale > 1.0 and self.cfg_type == 'initialize':
x_t_latent_plus_uc = torch.concat([x_t_latent[:p], x_t_latent], dim=0) # (T * p + 1, 4, h, w)
t_list = torch.concat([t_list[:p], t_list], dim=0) # (T * p + 1, 4, h, w)
elif self.guidance_scale > 1.0 and self.cfg_type == 'full':
x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0) # (2 * T * p, 4, h, w)
t_list = torch.concat([t_list, t_list], dim=0) # (2 * T * p,)
else:
x_t_latent_plus_uc = x_t_latent # (T * p, 4, h, w)
model_pred = self.unet(
x_t_latent_plus_uc.to(self.unet.dtype), # (B, 4, h, w)
t_list, # (B,)
encoder_hidden_states=self.prompt_embeds, # (B, 77, 768)
return_dict=False,
)[0] # (B, 4, h, w)
if self.bootstrap_steps[0] > 0:
# Uncentering.
bootstrap_mask = rearrange(self.masks, 'p t c h w -> (t p) c h w')
if self.guidance_scale > 1.0 and self.cfg_type == 'initialize':
bootstrap_mask_ = torch.concat([bootstrap_mask[:p], bootstrap_mask], dim=0)
elif self.guidance_scale > 1.0 and self.cfg_type == 'full':
bootstrap_mask_ = torch.concat([bootstrap_mask, bootstrap_mask], dim=0)
else:
bootstrap_mask_ = bootstrap_mask
model_pred = shift_to_mask_bbox_center(model_pred, bootstrap_mask_)
x_t_latent = shift_to_mask_bbox_center(x_t_latent, bootstrap_mask)
# # Remove leakage (optional).
# leak = (latent_ - bg_latent_).pow(2).mean(dim=1, keepdim=True)
# leak_sigmoid = torch.sigmoid(leak / self.bootstrap_leak_sensitivity) * 2 - 1
# fg_mask_ = fg_mask_ * leak_sigmoid
### noise_pred_text, noise_pred_uncond: (T * p, 4, h, w)
### self.stock_noise, init_noise: (T, 4, h, w)
if self.guidance_scale > 1.0 and self.cfg_type == 'initialize':
noise_pred_text = model_pred[p:]
self.stock_noise_ = torch.concat([model_pred[:p], self.stock_noise_[p:]], dim=0)
elif self.guidance_scale > 1.0 and self.cfg_type == 'full':
noise_pred_uncond, noise_pred_text = model_pred.chunk(2)
else:
noise_pred_text = model_pred
if self.guidance_scale > 1.0 and self.cfg_type in ('self', 'initialize'):
noise_pred_uncond = self.stock_noise_ * self.delta
if self.guidance_scale > 1.0 and self.cfg_type != 'none':
model_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
model_pred = noise_pred_text
# compute the previous noisy sample x_t -> x_t-1
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
if self.cfg_type in ('self' , 'initialize'):
scaled_noise = self.beta_prod_t_sqrt_ * self.stock_noise_
delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx)
# Do mask edit.
alpha_next = torch.concat([self.alpha_prod_t_sqrt_[p:], torch.ones_like(self.alpha_prod_t_sqrt_[:p])], dim=0)
delta_x = alpha_next * delta_x
beta_next = torch.concat([self.beta_prod_t_sqrt_[p:], torch.ones_like(self.beta_prod_t_sqrt_[:p])], dim=0)
delta_x = delta_x / beta_next
init_noise = torch.concat([self.init_noise_[p:], self.init_noise_[:p]], dim=0)
self.stock_noise_ = init_noise + delta_x
p2 = len(self.t_list) - 1
background = torch.concat([
self.scheduler.add_noise(
self.background.latent.repeat(p2, 1, 1, 1),
self.stock_noise[1:],
torch.tensor(self.t_list[1:], device=self.device),
),
self.background.latent,
], dim=0)
denoised_batch = rearrange(denoised_batch, '(t p) c h w -> p t c h w', p=p)
latent = (self.masks * denoised_batch).sum(dim=0) # (T, 4, h, w)
latent = torch.where(self.counts > 0, latent / self.counts, latent)
# latent = (
# (1 - self.bg_mask) * self.mask_strengths * latent
# + ((1 - self.bg_mask) * (1.0 - self.mask_strengths) + self.bg_mask) * background
# )
latent = (1 - self.bg_mask) * latent + self.bg_mask * background
return latent
@torch.no_grad()
def __call__(
self,
no_decode: bool = False,
ignore_check_ready: bool = False,
) -> Optional[Union[torch.Tensor, Image.Image]]:
if not ignore_check_ready and not self.check_ready():
return
if not ignore_check_ready and self.is_dirty:
print("I'm so dirty now!")
self.commit()
self.flush()
latent = torch.randn((1, self.unet.config.in_channels, self.latent_height, self.latent_width),
dtype=self.dtype, device=self.device) # (1, 4, h, w)
latent = torch.cat((latent, self.x_t_latent_buffer), dim=0) # (t, 4, h, w)
self.stock_noise = torch.cat((self.init_noise[:1], self.stock_noise[:-1]), dim=0) # (t, 4, h, w)
if self.cfg_type in ('self', 'initialize'):
self.stock_noise_ = self.stock_noise.repeat_interleave(self.num_layers, dim=0) # (T * p, 77, 768)
x_0_pred_batch = self.unet_step(latent)
latent = x_0_pred_batch[-1:]
self.x_t_latent_buffer = (
self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
+ self.beta_prod_t_sqrt[1:] * self.init_noise[1:]
)
# For pipeline flushing.
if no_decode:
return latent
imgs = self.decode_latents(latent.half()).float() # (1, 3, H, W)
img = T.ToPILImage()(imgs[0].cpu())
return img
def flush(self) -> None:
for _ in self.t_list:
self(True, True)
self.ready_checklist['flushed'] = True |