Dimitre's picture
Adding title and description
4d634a3
# Workaround to install the lib without "setup.py"
import sys
from git import Repo
Repo.clone_from("https://github.com/dimitreOliveira/hub.git", "./hub")
sys.path.append("/hub")
import gradio as gr
import tensorflow as tf
from hub.tensorflow_hub.hf_utils import pull_from_hub
import requests
# Download human-readable labels for ImageNet.
response = requests.get("https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt")
labels = [x for x in response.text.split("\n") if x != ""]
model = pull_from_hub(repo_id="Dimitre/mobilenet_v3_small")
def preprocess(image):
image = image.reshape((-1, 224, 224, 3)) # (batch_size, height, width, num_channels)
return image / 255.
def postprocess(prediction):
return {labels[i]: float(prediction[i]) for i in range(len(labels))}
def predict_fn(image):
image = preprocess(image)
logits = model(image)
probs = tf.nn.softmax(logits, axis=1)[0].numpy()
scores = postprocess(probs)
return scores
description = "Using the power of CLIP and a simple small CNN, find images from movies based on what you draw!"
iface = gr.Interface(fn=predict_fn,
title="ImageNet classification with mobilenet",
description="Predict from wich ImageNet class your images belongs",
inputs=gr.Image(shape=(224, 224)),
outputs=gr.Label(num_top_classes=5),
examples=["apples.jpeg", "banana.jpeg", "car.jpeg"])
iface.launch()